Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 47(11): 5455-5466, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32996591

ABSTRACT

PURPOSE: MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC). Dosimetric comparisons were made vs a conventional C-arm-mounted linac with a high-definition MLC. METHODS: The quality of MRL single-isocenter brain SRS treatment plans was evaluated as a function of target size for a series of spherical targets with diameters from 0.6 cm to 2.5 cm in an anthropomorphic head phantom and six brain metastases (max linear dimension = 0.7-1.9 cm) previously treated at our clinic on a conventional linac. Each target was prescribed 20 Gy to 99% of the target volume. Step-and-shoot IMRT plans were generated for the MRL using 11 static coplanar beams equally spaced over 360° about an isocenter placed at the center of the target. Couch and collimator angles are fixed for the MRL. Two MRL planning strategies (VR1 and VR2) were investigated. VR1 minimized the 12 Gy isodose volume while constraining the maximum point dose to be within ±1 Gy of 25 Gy which corresponded to normalization to an 80% isodose volume. VR2 minimized the 12 Gy isodose volume without the maximum dose constraint. For the conventional linac, the TB1 method followed the same strategy as VR1 while TB2 used five noncoplanar dynamic conformal arcs. Plan quality was evaluated in terms of conformity index (CI), conformity/gradient index (CGI), homogeneity index (HI), and volume of normal brain receiving ≥12 Gy (V12Gy ). Quality assurance measurements were performed with Gafchromic EBT-XD film following an absolute dose calibration protocol. RESULTS: For the phantom study, the CI of MRL plans was not significantly different compared to a conventional linac (P > 0.05). The use of dynamic conformal arcs and noncoplanar beams with a conventional linac spared significantly more normal brain (P = 0.027) and maximized the CGI, as expected. The mean CGI was 95.9 ± 4.5 for TB2 vs 86.6 ± 3.7 (VR1), 88.2 ± 4.8 (VR2), and 88.5 ± 5.9 (TB1). Each method satisfied a normal brain V12Gy  ≤ 10.0 cm3 planning goal for targets with diameter ≤2.25 cm. The mean V12Gy was 3.1 cm3 for TB2 vs 5.5 cm3 , 5.0 cm3 and 4.3 cm3 , for VR1, VR2, and TB1, respectively. For a 2.5-cm diameter target, only TB2 met the V12Gy planning objective. The MRL clinical brain plans were deemed acceptable for patient treatment. The normal brain V12Gy was ≤6.0 cm3 for all clinical targets (maximum target volume = 3.51 cm3 ). CI and CGI ranged from 1.12-1.65 and 81.2-88.3, respectively. Gamma analysis pass rates (3%/1mm criteria) exceeded 97.6% for six clinical targets planned and delivered on the MRL. The mean measured vs computed absolute dose difference was -0.1%. CONCLUSIONS: The MRL system can produce clinically acceptable brain SRS plans for spherical lesions with diameter ≤2.25 cm. Large lesions (>2.25 cm) should be treated with a linac capable of delivering noncoplanar beams.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain/diagnostic imaging , Brain/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Feasibility Studies , Humans , Magnetic Resonance Imaging , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
2.
Rev Sci Instrum ; 87(11): 114301, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910378

ABSTRACT

The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm3 water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm2 and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

3.
Med Phys ; 43(2): 796-806, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26843242

ABSTRACT

PURPOSE: Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. METHODS: A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 µW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. RESULTS: The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. CONCLUSIONS: A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 µW.


Subject(s)
Brachytherapy , Radiation Dosage , Radiometry/instrumentation , Calorimetry , Equipment Design , Iodine Radioisotopes/therapeutic use , Models, Theoretical , Radiotherapy Dosage , Temperature
4.
Med Phys ; 42(5): 2379-88, 2015 May.
Article in English | MEDLINE | ID: mdl-25979033

ABSTRACT

PURPOSE: To investigate why dose-rate constants for (125)I and (103)Pd seeds computed using the spectroscopic technique, Λ spec, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique's use of approximations of the true fluence distribution leaving the source, φ full. In particular, the fluence distribution used in the spectroscopic technique, φ spec, approximates the spatial, angular, and energy distributions of φ full. This work quantified the extent to which each of these approximations affects the accuracy of Λ spec. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ spec. METHODS: Dose-rate constants as described in the AAPM TG-43U1 report, Λ full, were computed with MC simulations using the full source geometry for each of 14 different (125)I and 6 different (103)Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ spec. Λ spec was compared to Λ full to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ full were extracted from the phase spaces and were qualitatively compared to those used by φ spec. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ spec. The dose-rate constant resulting from using approximated distribution i, Λ approx,i, was computed using the modified phase space and compared to Λ full. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ spec. RESULTS: For all sources studied, the angular and spatial distributions of φ full were more complex than the distributions used in φ spec. Differences between Λ spec and Λ full ranged from -0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ spec, which caused differences in Λ of up to +5.3% relative to Λ full. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of -0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of -0.4%. CONCLUSIONS: The approximations used in φ spec caused discrepancies between Λ approx,i and Λ full of up to 7.8%. With the exception of the energy distribution, the approximations used in φ spec contributed to this discrepancy for all source models studied. To improve the accuracy of Λ spec, the spatial and angular distributions of φ full could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ full binned at different spatial and angular resolutions.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Spectrum Analysis/methods , Computer Simulation , Dose-Response Relationship, Radiation , Iodine Radioisotopes/therapeutic use , Models, Theoretical , Monte Carlo Method , Palladium , Radiotherapy Dosage , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...