Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 451, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714919

ABSTRACT

BACKGROUND: Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS: This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.


Subject(s)
Fishes , Ovary , Proteomics , Animals , Fishes/metabolism , Female , Proteomics/methods , Ovary/metabolism , Tandem Mass Spectrometry , Chromatography, Liquid , Proteome/metabolism , Proteome/analysis , Fish Proteins/metabolism , Ovum/metabolism , Egg Proteins/metabolism , Egg Proteins/analysis
2.
Front Pharmacol ; 15: 1351536, 2024.
Article in English | MEDLINE | ID: mdl-38495105

ABSTRACT

Neuroblastoma (NB) is the most common extracranial pediatric solid tumor originating from the abnormal development of cells of the sympathoadrenal lineage of the neural crest. Targeting GD2 ganglioside (GD2), a glycolipid expressed on neuroblastoma cells, with GD2 ganglioside-recognizing antibodies affects several pivotal signaling routes that drive or influence the malignant phenotype of the cells. Previously performed gene expression profiling helped us to identify the PHLDA1 (pleckstrin homology-like domain family A member 1) gene as the most upregulated gene in the IMR-32 human neuroblastoma cells treated with the mouse 14G2a monoclonal antibody. Mass spectrometry-based proteomic analyses were applied to better characterize a role of PHLDA1 protein in the response of neuroblastoma cells to chimeric ch14.18/CHO antibody. Additionally, global protein expression profile analysis in the IMR-32 cell line with PHLDA1 silencing revealed the increase in biological functions of mitochondria, accompanied by differentiation-like phenotype of the cells. Moreover, mass spectrometry analysis of the proteins co-immunoprecipitated using anti-PHLDA1-specific antibody, selected a group of possible PHLDA1 binding partners. Also, a more detailed analysis suggested that PHLDA1 interacts with the DCAF7/AUTS2 complex, a key component of neuronal differentiation in vitro. Importantly, our results indicate that PHLDA1 silencing enhances the EGF receptor signaling pathway and combinatory treatment of gefitinib and ch14.18/CHO antibodies might be beneficial for neuroblastoma patients. Data are available via ProteomeXchange with the identifier PXD044319.

3.
Adv Protein Chem Struct Biol ; 138: 67-99, 2024.
Article in English | MEDLINE | ID: mdl-38220433

ABSTRACT

Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.


Subject(s)
Protein Biosynthesis , Proteomics , Animals , Humans , Mammals , Protein Isoforms/genetics
4.
Biomolecules ; 13(11)2023 11 13.
Article in English | MEDLINE | ID: mdl-38002330

ABSTRACT

Mdx mice with a spontaneous mutation in exon 23 of the Dmd gene represent the most common model to investigate the pathophysiology of Duchenne muscular dystrophy (DMD). The disease, caused by the lack of functional dystrophin, is characterized by irreversible impairment of muscle functions, with the diaphragm affected earlier and more severely than other skeletal muscles. We applied a label-free (LF) method and the more thorough tandem mass tag (TMT)-based method to analyze differentially expressed proteins in the diaphragm of 6-week-old mdx mice. The comparison of both methods revealed 88 commonly changed proteins. A more in-depth analysis of the TMT-based method showed 953 significantly changed proteins, with 867 increased and 86 decreased in dystrophic animals (q-value < 0.05, fold-change threshold: 1.5). Consequently, several dysregulated processes were demonstrated, including the immune response, fibrosis, translation, and programmed cell death. Interestingly, in the dystrophic diaphragm, we found a significant decrease in the expression of enzymes generating hydrogen sulfide (H2S), suggesting that alterations in the metabolism of this gaseous mediator could modulate DMD progression, which could be a potential target for pharmacological intervention.


Subject(s)
Diaphragm , Muscular Dystrophy, Duchenne , Animals , Mice , Mice, Inbred mdx , Diaphragm/metabolism , Proteome/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscle, Skeletal/metabolism , Mice, Inbred C57BL
5.
RNA ; 29(11): 1673-1690, 2023 11.
Article in English | MEDLINE | ID: mdl-37562960

ABSTRACT

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Subject(s)
Ribonucleoprotein, U7 Small Nuclear , Ribonucleoproteins, Small Nuclear , Animals , Ribonucleoprotein, U7 Small Nuclear/chemistry , Methylation , Ribonucleoproteins, Small Nuclear/metabolism , Histones/metabolism , Arginine/chemistry
6.
Cell Commun Signal ; 21(1): 177, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37480072

ABSTRACT

Fibroblast growth factor receptor 1 (FGFR1) is a heavily N-glycosylated cell surface receptor tyrosine kinase that transmits signals across the plasma membrane, in response to fibroblast growth factors (FGFs). Balanced FGF/FGFR1 signaling is crucial for the development and homeostasis of the human body, and aberrant FGFR1 is frequently observed in various cancers. In addition to its predominant localization to the plasma membrane, FGFR1 has also been detected inside cells, mainly in the nuclear lumen, where it modulates gene expression. However, the exact mechanism of FGFR1 nuclear transport is still unknown. In this study, we generated a glycosylation-free mutant of FGFR1, FGFR1.GF, and demonstrated that it is localized primarily to the nuclear envelope. We show that reintroducing N-glycans into the D3 domain cannot redirect FGFR1 to the plasma membrane or exclude the receptor from the nuclear envelope. Reestablishment of D2 domain N-glycans largely inhibits FGFR1 accumulation in the nuclear envelope, but the receptor continues to accumulate inside the cell, mainly in the ER. Only the simultaneous presence of N-glycans of the D2 and D3 domains of FGFR1 promotes efficient transport of FGFR1 to the plasma membrane. We demonstrate that while disturbed FGFR1 folding results in partial FGFR1 accumulation in the ER, impaired FGFR1 secretion drives FGFR1 trafficking to the nuclear envelope. Intracellular FGFR1.GF displays a high level of autoactivation, suggesting the presence of nuclear FGFR1 signaling, which is independent of FGF. Using mass spectrometry and proximity ligation assay, we identified novel binding partners of the nuclear envelope-localized FGFR1, providing insights into its cellular functions. Collectively, our data define N-glycosylation of FGFR1 as an important regulator of FGFR1 kinase activity and, most importantly, as a switchable signal for FGFR1 trafficking between the nuclear envelope and plasma membrane, which, due to spatial restrictions, shapes FGFR1 interactome and cellular function. Video Abstract.


Subject(s)
Nuclear Envelope , Receptor, Fibroblast Growth Factor, Type 1 , Humans , Cell Membrane , Glycosylation , Fibroblast Growth Factors
7.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511532

ABSTRACT

Under nutrient deficiency or starvation conditions, the mobilization of storage compounds during seed germination is enhanced to primarily supply respiratory substrates and hence increase the potential of cell survival. Nevertheless, we found that, under sugar starvation conditions in isolated embryonic axes of white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet) cultured in vitro for 96 h, the disruption of lipid breakdown occurs, as was reflected in the higher lipid content in the sugar-starved (-S) than in the sucrose-fed (+S) axes. We postulate that pexophagy (autophagic degradation of the peroxisome-a key organelle in lipid catabolism) is one of the reasons for the disruption in lipid breakdown under starvation conditions. Evidence of pexophagy can be: (i) the higher transcript level of genes encoding proteins of pexophagy machinery, and (ii) the lower content of the peroxisome marker Pex14p and its increase caused by an autophagy inhibitor (concanamycin A) in -S axes in comparison to the +S axes. Additionally, based on ultrastructure observation, we documented that, under sugar starvation conditions lipophagy (autophagic degradation of whole lipid droplets) may also occur but this type of selective autophagy seems to be restricted under starvation conditions. Our results also show that autophagy occurs at the very early stages of plant growth and development, including the cells of embryonic seed organs, and allows cell survival under starvation conditions.


Subject(s)
Lupinus , Sugars , Sugars/metabolism , Lupinus/metabolism , Carbohydrates , Seeds/metabolism , Autophagy , Lipids
8.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37215023

ABSTRACT

U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.

9.
Theriogenology ; 205: 79-86, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37094460

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound nanoparticles that are released by different cell types and play a crucial role in the intercellular communication. They carry various biomolecular compounds such as DNA, RNA, proteins, and lipids. Given that EVs are a new element of the communication within the ovarian follicle, extensive research is needed to optimize method of their isolation. The aim of the study was to assess size-exclusion chromatography (SEC) as a tool for effective EVs isolation from porcine ovarian follicular fluid. The characterization of EVs was performed by nanoparticle tracking analysis, transmission electron microscopy, atomic force microscopy, mass spectrometry and Western blot. We determined EVs concentration, size distribution, zeta potential, morphology, purity, and marker proteins. Our results show that SEC is an effective method for isolation of EVs from porcine follicular fluid. They displayed predominantly exosome properties with sufficient purity and possibility for further functional analyses, including proteomics.


Subject(s)
Exosomes , Extracellular Vesicles , Female , Animals , Swine , Follicular Fluid , Extracellular Vesicles/chemistry , Exosomes/metabolism , Chromatography, Gel/veterinary , Proteins/metabolism
10.
Methods Mol Biol ; 2478: 123-140, 2022.
Article in English | MEDLINE | ID: mdl-36063321

ABSTRACT

Optical tweezers are widely used to investigate biomolecules and biomolecular interactions. In these investigations, the biomolecules of interest are typically coupled to microscopic beads that can be optically trapped. Since high-intensity laser beams are required to trap such microscopic beads, laser-induced heating due to optical absorption is typically unavoidable. This chapter discusses how to identify, quantify, and control thermal effects in optical tweezers. We provide a brief overview of the reported causes and effects of unwanted heating in optical tweezers systems. Specific details are provided on methods to perform a temperature-independent trap calibration procedure. Finally, an effective temperature-control system is presented, and we discuss the operation of this system as well as the methods to measure the temperature at the optically trapped particle.


Subject(s)
Lasers , Optical Tweezers , Calibration , Heating , Temperature
11.
Fish Shellfish Immunol ; 127: 822-835, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35840052

ABSTRACT

Aeromonas salmonicida is recognized as a significant bacterial pathogen in ulcerative disease of cyprinid fish. However, the mechanism of immunity to these bacteria in common carp is still not well understood, especially the immune regulation in the gonad to bacterial infection. The aims of our study were to analyze changes in the seminal plasma proteome following A. salmonicida infection in carp males. The observed pathological changes in the tissue (liver, spleen, kidney and testis) morphology and upregulation of immune-related genes (tnfa2, il6a) confirmed the successful infection challenge. Using mass spectrometry-based label-free quantitative proteomics, we identified 1402 seminal plasma proteins, and 44 proteins (20 up- and 24 downregulated) were found to be differentially abundant between infected and control males. Most differentially abundant proteins were involved in the immune response mechanisms, such as acute phase response, complement activation and coagulation, inflammation, lipid metabolism, cell-cell and cell-matrix adhesion, creatine-phosphate biosynthesis and germ cell-Sertoli cell junction signaling. Bacterial infection also caused profound changes in expression of selected genes in the testis and hematopoietic organs, which contributed to changes in seminal proteins. The altered seminal proteins and bacterial proteins in seminal plasma may serve as valuable markers of infection in the testis.


Subject(s)
Bacterial Infections , Carps , Fish Diseases , Animals , Bacterial Infections/veterinary , Carps/genetics , Genitalia, Male , Immunity , Male , Proteomics , Semen/metabolism
12.
Cells ; 11(7)2022 03 30.
Article in English | MEDLINE | ID: mdl-35406725

ABSTRACT

Chemerin (CHEM) is a hormone mainly expressed in adipocytes involved in the regulation of energy homeostasis and inflammatory response. CHEM expression has been demonstrated in the structures of the porcine hypothalamic-pituitary-gonadal axis, as well as in the uterus, trophoblasts and conceptuses of pigs. In this study, we performed high-throughput proteomic analyses (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the influence of CHEM (400 ng/mL) on differentially regulated proteins (DRPs) in the porcine endometrial tissue explants during implantation (15 to 16 days of gestation). Among all 352 DRPs, 164 were up-regulated and 188 were down-regulated in CHEM-treated group. DRPs were assigned to 47 gene ontology (GO) terms (p-adjusted < 0.05). Validation of four DRPs (IFIT5, TGFß1, ACO1 and PGRMC1) by Western blot analysis confirmed the veracity and accuracy of the LC-MS/MS method used in the present study. We suggest that CHEM, by modulating various protein expressions, takes part in the endometrial cell proliferation, migration and invasion at the time of implantation. It also regulates the endometrial immune response, sensitivity to P4 and the formation of new blood vessels. Additionally, CHEM appears to be an important factor involved in endothelial cell dysfunction during the pathogenesis of preeclampsia. The identification of a large number of DRPs under the influence of CHEM provides a valuable resource for understanding the molecular mechanisms of this hormone action during implantation, which is a prerequisite for better control of pig reproduction.


Subject(s)
Proteome , Sus scrofa , Animals , Chromatography, Liquid , Female , Hormones , Proteome/metabolism , Proteomics/methods , Sus scrofa/metabolism , Swine , Tandem Mass Spectrometry
13.
J Thromb Haemost ; 20(1): 157-169, 2022 01.
Article in English | MEDLINE | ID: mdl-34592041

ABSTRACT

BACKGROUND: Platelet-derived protein disulfide isomerase 1 (PDIA1) regulates thrombus formation, but its role in the regulation of platelet function is not fully understood. AIMS: The aim of this study was to characterize the role of PDIA1 in human platelets. METHODS: Proteomic analysis of PDI isoforms in platelets was performed using liquid chromatography tandem mass spectometry, and the expression of PDIs on platelets in response to collagen, TRAP-14, or ADP was measured with flow cytometry. The effects of bepristat, a selective PDIA1 inhibitor, on platelet aggregation, expression of platelet surface activation markers, thromboxane A2 (TxA2 ), and reactive oxygen species (ROS) generation were evaluated by optical aggregometry, flow cytometry, ELISA, and dihydrodichlorofluorescein diacetate-based fluorescent assay, respectively. RESULTS: PDIA1 was less abundant compared with PDIA3 in resting platelets and platelets stimulated with TRAP-14, collagen, or ADP. Collagen, but not ADP, induced a significant increase in PDIA1 expression. Bepristat potently inhibited the aggregation of washed platelets induced by collagen or convulxin, but only weakly inhibited platelet aggregation induced by TRAP-14 or thrombin, and had the negligible effect on platelet aggregation induced by arachidonic acid. Inhibition of PDIA1 by bepristat resulted in the reduction of TxA2 and ROS production in collagen- or thrombin-stimulated platelets. Furthermore, bepristat reduced the activation of αIIbß3 integrin and expression of P-selectin. CONCLUSIONS: PDIA1 acts as an intraplatelet regulator of the ROS-TxA2 pathway in collagen-GP VI receptor-mediated platelet activation that is a mechanistically distinct pathway from extracellular regulation of αIIbß3 integrin by PDIA3.


Subject(s)
Blood Platelets , Protein Disulfide-Isomerases , Blood Platelets/metabolism , Humans , Platelet Aggregation , Protein Disulfide-Isomerases/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Thromboxane A2/pharmacology , Thromboxanes/metabolism
14.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884899

ABSTRACT

Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and ß-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.


Subject(s)
Liver/metabolism , Palm Oil/administration & dosage , Palmitic Acid/chemistry , Proteomics/methods , Soybean Oil/administration & dosage , Amino Acids/metabolism , Animals , Dietary Supplements , Fatty Acids/analysis , Homeostasis , Liver/drug effects , Macrophages, Peritoneal/chemistry , Male , Mass Spectrometry , Mice , Palm Oil/chemistry , Palm Oil/pharmacology , Soybean Oil/pharmacology
15.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948248

ABSTRACT

The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of Campylobacter jejuni. The oxidizing Dsb system of this pathogen is unique because it consists of two monomeric DsbAs (DsbA1 and DsbA2) and one dimeric bifunctional protein (C8J_1298). Previously, we showed that DsbA1 and C8J_1298 are redundant. Here, we unraveled the interaction between the two monomeric DsbAs by in vitro and in vivo experiments and by solving their structures and found that both monomeric DsbAs are dispensable proteins. Their structures confirmed that they are homologs of EcDsbL. The slight differences seen in the surface charge of the proteins do not affect the interaction with their redox partner. Comparative proteomics showed that several respiratory proteins, as well as periplasmic transport proteins, are targets of the Dsb system. Some of these, both donors and electron acceptors, are essential elements of the C. jejuni respiratory process under oxygen-limiting conditions in the host intestine. The data presented provide detailed information on the function of the C. jejuni Dsb system, identifying it as a potential target for novel antibacterial molecules.


Subject(s)
Oxidoreductases/metabolism , Periplasmic Proteins/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Amino Acid Sequence , Bacterial Physiological Phenomena , Bacterial Proteins/metabolism , Campylobacter jejuni/pathogenicity , Campylobacter jejuni/physiology , Disulfides/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Periplasm/metabolism , Periplasmic Proteins/genetics , Sequence Homology, Amino Acid
16.
Cancers (Basel) ; 13(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34439305

ABSTRACT

Growing tumors avoid recognition and destruction by the immune system. During continuous stimulation of tumor-infiltrating lymphocytes (TILs) by tumors, TILs become functionally exhausted; thus, they become unable to kill tumor cells and to produce certain cytokines and lose their ability to proliferate. This collectively results in the immune escape of cancer cells. Here, we show that breast cancer cells expressing PD-L1 can accelerate exhaustion of persistently activated human effector CD4+ T cells, manifesting in high PD-1 and PD-L1 expression level son T cell surfaces, decreased glucose metabolism genes, strong downregulation of SWI/SNF chromatin remodeling complex subunits, and p21 cell cycle inhibitor upregulation. This results in inhibition of T cell proliferation and reduction of T cell numbers. The RNAseq analysis on exhausted CD4+ T cells indicated strong overexpression of IDO1 and genes encoding pro-inflammatory cytokines and chemokines. Some interleukins were also detected in media from CD4+ T cells co-cultured with cancer cells. The PD-L1 overexpression was also observed in CD4+ T cells after co-cultivation with other cell lines overexpressing PD-L1, which suggested the existence of a general mechanism of CD4+ T cell exhaustion induced by cancer cells. The ChIP analysis on the PD-L1 promoter region indicated that the BRM recruitment in control CD4+ T cells was replaced by BRG1 and EZH2 in CD4+ T cells strongly exhausted by cancer cells. These findings suggest that epi-drugs such as EZH2 inhibitors may be used as immunomodulators in cancer treatment.

17.
Res Vet Sci ; 140: 134-141, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34428631

ABSTRACT

Herpesviruses are the main cause of abortions and respiratory or neurological disorders in horses. Various disease patterns are suspected to be associated with the A2254G point mutation in the DNA polymerase sequence (ORF30) of the herpesvirus genome, although the importance of this link is still under debate. Based on a label-free quantitative proteomic analysis, the differences in the secretion of some host proteins between rabbit kidney cells infected with A2254 and cells of the same line infected with G2254 equine herpesvirus 1 (EHV-1) strains were identified. In both groups, downregulation of proteins involved in insulin growth factor and extracellular matrix pathway regulation was observed. Among 12 proteins with increased secretion, 8 were regulated only in G2254 EHV-1 infection. Those were endoplasmic reticulum chaperones with calcium binding properties, related to unfolded protein response and mitochondria. It was presumed that the secretion of proteins such as calreticulin, Hspa5 or endoplasmin may contribute to the pathogenesis of EHV-1 infection.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Female , Herpesviridae Infections/veterinary , Horses , Kidney , Pregnancy , Proteomics , Rabbits
18.
J Proteome Res ; 20(5): 2458-2476, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33797904

ABSTRACT

Protein N-homocysteinylation by a homocysteine (Hcy) metabolite, Hcy-thiolactone, is an emerging post-translational modification (PTM) that occurs in all tested organisms and has been linked to human diseases. The yeast Saccharomyces cerevisiae is widely used as a model eukaryotic organism in biomedical research, including studies of protein PTMs. However, patterns of global protein N-homocysteinylation in yeast are not known. Here, we identified 68 in vivo and 197 in vitro N-homocysteinylation sites at protein lysine residues (N-Hcy-Lys). Some of the N-homocysteinylation sites overlap with other previously identified PTM sites. Protein N-homocysteinylation in vivo, induced by supplementation of yeast cultures with Hcy, which elevates Hcy-thiolactone levels, was accompanied by significant changes in the levels of 70 yeast proteins (38 up-regulated and 32 down-regulated) involved in the ribosomal structure, amino acid biosynthesis, and basic cellular pathways. Our study provides the first global survey of N-homocysteinylation and accompanying changes in the yeast proteome caused by elevated Hcy level. These findings suggest that protein N-homocysteinylation and dysregulation of cellular proteostasis may contribute to the toxicity of Hcy in yeast. Homologous proteins and N-homocysteinylation sites are likely to be involved in Hcy-related pathophysiology in humans and experimental animals. Data are available via ProteomeXchange with identifier PXD020821.


Subject(s)
Lysine , Saccharomyces cerevisiae , Animals , Homocysteine , Humans , Lysine/metabolism , Protein Processing, Post-Translational , Proteome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
19.
Genes (Basel) ; 12(5)2021 04 25.
Article in English | MEDLINE | ID: mdl-33923051

ABSTRACT

The slime mold Dictyostelium discoideum's life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria's structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Subject(s)
Dictyostelium/metabolism , Gene Expression Regulation, Developmental , Mitochondrial Proteins/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Dictyostelium/genetics , Dictyostelium/growth & development , Energy Metabolism , Life Cycle Stages , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Proteome/genetics , Protozoan Proteins/genetics
20.
Aquat Toxicol ; 215: 105288, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31526926

ABSTRACT

Pharmaceuticals are used in medical treatment on a large scale and as a waste contaminate freshwater ecosystems. Growing amount of so-called civilization diseases, such as different type of cancer, significantly contribute to this form of pollution. The aim of the present study was to determine how the exposure to chemotherapeutics: cyclophosphamide (CP) and cisplatin (CDDP), at detected in environment concentrations, influence proteome profile, life history and population parameters of naturally setting surface waters Daphnia pulex and Daphnia pulicaria. The parameters important for crustaceans, survivorship and population growth rate, were importantly decreased by CDDP treatment but not influenced by CP. On the contrary, the individual growth rate was affected only by CP and exclusively in the case of D. pulicaria. In both clones treated with CP or CDDP, decreased number of eggs was observed. Interestingly, Daphnia males were less sensitive to tested chemotherapeutic than females. Proteome profile revealed that tested anticancer pharmaceuticals modified expression of some proteins involved in Daphnia metabolism. Moreover, males exposed to CDDP showed increased level of enzymes participating in DNA repair. Summing up, the contaminating environment chemotherapeutics reduced fitness of naturally occurring Daphnia species. In consequence this may affect functioning of the aquatic food webs.


Subject(s)
Antineoplastic Agents/toxicity , Daphnia/genetics , Water Pollutants, Chemical/toxicity , Analysis of Variance , Animals , Cisplatin/toxicity , Cyclophosphamide/toxicity , Daphnia/drug effects , Daphnia/growth & development , Female , Life Cycle Stages/drug effects , Male , Proteins/metabolism , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...