Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Neurochir Pol ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668022

ABSTRACT

INTRODUCTION: The phenomenon known as periodic limb movements in sleep (PLMS) has been linked to a change in autonomic nervous system (ANS) activity and its effect on circulatory regulation. Autonomic dysfunction or dysregulation in patients with PLMS has been described in some domains; however, any relationship between heart rate variability (HRV) and PLMS has not been clearly established. HRV analysis is a recognised, non-invasive research method that describes the influence of the ANS on heart rate (HR). The aim of our study was to further investigate the dysregulation of autonomic HR control in patients with PLMS. MATERIAL AND METHODS: We undertook a retrospective analysis of the polysomnographic (PSG), demographic and medical data of five patients with a total number of 1,348 PLMS. We analysed HR, HRV HF, systolic blood pressure (SBP), and diastolic blood pressure (DBP) for 10 heartbeats before the series of PLMS and 10 consecutive heartbeats as beat-to-beat measurements. The presented method of using successive, short, 10 RR interval segments refers to the time-frequency measurement, which is very clear and useful for presenting changes in the calculated parameters over time and thereby illustrating their dynamics. This method allowed us to assess dynamic changes in HRV HF during successive PLMS series. Statistical analysis was performed using IBM SPSS Statistics (v. 28.0.0.0). The Kruskal-Wallis test was performed to find statistically significant changes from baseline. RESULTS: No statistically significant changes in HR, SBP, or DBP were found in our group, although an increase in the value of the HRV HF was noted, suggesting an increase in intracardiac parasympathetic activity during the subsequent series of PLMS. CONCLUSIONS: Our study indicates an increase in parasympathetic activity during the appearance of successive PLMS, which, with the simultaneous lack of changes in HR, may suggest an increase in sympathetic activity, and therefore the appearance of so-called 'autonomic co-activation' resulting in the possibility of life-threatening cardiac events. CLINICAL IMPLICATIONS: Our findings add to the literature information regarding HRV in PLMS, and highlight the need for further studies to elucidate the effects of these conditions on the ANS, and on cardiovascular health.

2.
Biology (Basel) ; 12(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37372152

ABSTRACT

The regular cardiac response to immersion of the face in cold water is reduction in heart rate (HR). The highly individualized and unpredictable course of the cardiodepressive response prompted us to investigate the relationship between the cardiac response to face immersion and the resting HR. The research was conducted with 65 healthy volunteers (37 women and 28 men) with an average age of 21.13 years (20-27 years) and a BMI of 21.49 kg/m2 (16.60-28.98). The face-immersion test consisted of stopping breathing after maximum inhaling and voluntarily immersing the face in cold water (8-10 °C) for as long as possible. Measurements included determination of minimum, average, and maximum HR at rest and minimum and maximum HR during the cold-water face-immersion test. The results indicate a strong relationship between the cardiodepressive reaction of the immersion of the face and the minimum HR before the test, as well as a relationship between the maximum HR during the test and the maximum HR at rest. The results also indicate a strong influence of neurogenic HR regulation on the described relationships. The parameters of the basal HR can, therefore, be used as prognostic indicators of the course of the cardiac response of the immersion test.

3.
Biology (Basel) ; 12(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36671817

ABSTRACT

A characteristic feature of the cardiac response to diving is the uncertainty in predicting individual course. The aim of the study was to determine whether resting regulatory heart rate determinants assessed before diving may be predictors of cardiac response in a simulated diving test. The research was conducted with 65 healthy volunteers (37 women and 28 men) with an average age of 21.13 years (20-27 years) and a BMI of 21.49 kg/m2 (16.60-28.98). The simulated diving test consisted of stopping breathing after maximum inhaling and voluntarily immersing the face in water (8-10 °C) for as long as possible. The measurements included heart rate variability (HRV) analysis before diving and determination of the course of the cardiac response to diving-minimum and maximum heart rate (HR). The results indicate that minimum HR during diving (MIN_div) is dependent on the short-term HRV measures, which proves the strong influence of the parasympathetic system on the MIN_div. The lack of dependence of MIN_div on short-term HRV in women may be associated with differences in neurogenic HR regulation in women and men. In conclusion, cardiac response to simulated diving is strictly dependent on the autonomic regulation of the heart rhythm under resting conditions. The course of the cardiac response to diving and its relationship with resting HRV appears to be gender dependent.

SELECTION OF CITATIONS
SEARCH DETAIL
...