Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pak J Biol Sci ; 27(3): 113-118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38686732

ABSTRACT

<b>Background and Objective:</b> Malnutrition and stunting are major unresolved problems in Indonesia. Protein deficiency can cause stunted growth, as well as make physical and cognitive abilities cannot reach their maximum potential. During childhood the need for protein must be fulfilled so that the peak of bone formation during adolescence can be perfect. In malnourished children, a low protein diet will lead to thinning of the bone cortex. Due to the high rate of stunting and malnutrition in children due to protein deficiency, a study was conducted on the effects of feeding low protein diet on rat bones. <b>Materials and Methods:</b> Male Wistar rats (n = 10) at 6-8 weeks old (body weight around 250 g), control groups were fed a normal chow diet and low protein diet groups were given low protein chow diet (protein 5%) for 18 weeks, then the rats were sacrificed and the femoral bones were isolated. Body weight, femur weight, femur length were checked and bone density was examined using X-ray. <b>Results:</b> The body proportions of the low protein group rats were smaller and thinner than those of the control group. This difference is supported by the significant weight loss starting from the sixth week after low protein feeding. There are significant differences in body weight and femur weight between the control and low protein diet groups. Bone density decreases significantly in low protein diet group. Macroscopically, the femur length of the low protein group was shorter than the control group, however the femur length did not show significant differences statistically between the two groups. <b>Conclusion:</b> A low protein diet decreased the body weight of the rats, also causing impaired bone growth characterized by decreasing femur weight. The low protein diet also caused osteoporosis in the bones.


Subject(s)
Bone Density , Diet, Protein-Restricted , Femur , Rats, Wistar , Animals , Male , Femur/metabolism , Rats , Body Weight , Bone Development , Bone and Bones/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism
2.
Diagnostics (Basel) ; 13(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958261

ABSTRACT

Dengue is an arboviral disease that has spread globally and become a major public health concern. A small proportion of patients may progress from symptomatic dengue fever (DF) to dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Findings from a previous genome-wide association study (GWAS) demonstrated that variations in the major histocompatibility complex (MHC) class I chain-related B (MICB) and the phospholipase C epsilon 1 (PLCE1) genes were related to DSS in a Vietnamese population. This study investigated associations of variations in MICB (rs3132468) and PLCE1 (rs3740360, rs3765524) with dengue severity and thrombocytopenia in both the Indonesian and Taiwanese populations. We sampled 160 patients from the Indonesian population and 273 patients from the Taiwanese population. None of the patients had DSS in the Taiwanese population. Based on age demographics, we found that dengue is more prevalent among younger individuals in the Indonesian population, whereas it has a greater impact on adults in the Taiwanese population. Our results showed the association between MICB rs3132468 and DSS. In addition, an association was identified between PLCE1 rs3740360 and DHF in secondary dengue in Indonesian patients. However, there is no association of MICB or PLCE1 variants with thrombocytopenia. This study highlights the value of genetic testing, which might be included in the clinical pathway for specific patients who can be protected from severe dengue.

3.
Res Pharm Sci ; 17(5): 558-571, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36386490

ABSTRACT

Background and purpose: Yam bean (Pachyrhizus erosus) is a potent medicinal plant exerting therapeutical effects against diseases. However, investigations on the health benefits of its fiber remain limited. This study aimed to investigate the potential of yam bean fiber (YBF) against a high-fat diet (HFD)-induced metabolic diseases, inflammation, and gut dysbiosis. Experimental approach: Adult male mice were assigned to four groups (8 each), namely a normal diet-fed group (ND), HFD-fed group, and HFD supplemented with YBF groups (HFD + YBF) at a dose of 2.5% and 10%, respectively. Treatments were implemented for ten weeks. Thereafter, indicators of metabolic diseases, oxidative stress, inflammation, and gut microbiota composition were determined. Findings / Results: A dosage of 10% YBF significantly inhibited excessive body weight gain (2.3 times lower than HFD group) and white adipose tissue (WAT) mass (2.2 times lower than HFD group) while sustaining brown adipose tissue mass. YBF prevented malondialdehyde elevation, catalase activity reduction, and expression of the interleukin-6 increment (2.7 times lower than the HFD group) within the WAT. Furthermore, YBF sustained normoglycaemia, glucose tolerance, and insulin sensitivity while precluding hyperinsulinemia. YBF modulated the gut microbiota community by increasing health-promoting microbiota including Lactobacillus reuteri, L. johnsonii, and inhibiting a pathogenic Mucispirillum sp. YBF prevented histopathology and inflammation of the colon. Conclusion and implications: YBF at the dose of 10% is proved to be useful in the prevention of diet-induced metabolic diseases, microbiota dysbiosis, and inflammation. Hence, YBF is recommended as a potential natural-based remedy to diminish the detrimental effects of high-fat foods.

4.
Biochem Biophys Rep ; 31: 101307, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35832745

ABSTRACT

Background: One of the main challenges in personalized medicine is to establish and apply a large number of variants from genomic databases into clinical diagnostics and further facilitate genome-driven drug repurposing. By utilizing biological chronic hepatitis B infection (CHB) risk genes, our study proposed a systematic approach to use genomic variants to drive drug repurposing for CHB. Method: The genomic variants were retrieved from the Genome-Wide Association Study (GWAS) and Phenome-Wide Association Study (PheWAS) databases. Then, the biological CHB risk genes crucial for CHB progression were prioritized based on the scoring system devised with five strict functional annotation criteria. A score of ≥ 2 were categorized as the biological CHB risk genes and further shed light on drug target genes for CHB treatments. Overlapping druggable targets were identified using two drug databases (DrugBank and Drug-Gene Interaction Database (DGIdb)). Results: A total of 44 biological CHB risk genes were screened based on the scoring system from five functional annotation criteria. Interestingly, we found 6 druggable targets that overlapped with 18 drugs with status of undergoing clinical trials for CHB, and 9 druggable targets that overlapped with 20 drugs undergoing preclinical investigations for CHB. Eight druggable targets were identified, overlapping with 25 drugs that can potentially be repurposed for CHB. Notably, CD40 and HLA-DPB1 were identified as promising targets for CHB drug repurposing based on the target scores. Conclusion: Through the integration of genomic variants and a bioinformatic approach, our findings suggested the plausibility of CHB genomic variant-driven drug repurposing for CHB.

5.
Acta Histochem Cytochem ; 51(5): 145-152, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30510328

ABSTRACT

Laminin, a major basement membrane protein, comprises three subunit chains: α, ß, and γ chains. Among these chains, only the laminin α chain is capable of signaling via laminin receptors. Although laminin isoforms containing the α5 chain were reported to be the first laminin produced during rat anterior pituitary gland development, the functions of these isoforms are unknown. We used immunohistochemical techniques to localize the laminin α5 chain and its specific receptor, basal cell adhesion molecule (BCAM), in fetal and adult pituitary gland. Laminin α5 chain immunoreactivity was observed in the basement membrane of the primordial adenohypophysis at embryonic days 12.5 to 19.5. Double immunostaining showed that BCAM was present and co-localized with the laminin α5 chain in the tissue. Quantitative analysis showed that the laminin α5 chain and BCAM were expressed in the anterior pituitary gland during postnatal development and in adulthood (postnatal day 60). In the adult gland, co-localization of the laminin α5 chain and BCAM was observed, and BCAM was detected in both the folliculo-stellate cells and endothelial cells. These results suggest that laminin α5 chain signaling via BCAM occurs in both the fetal adenohypophysis and adult anterior pituitary gland.

6.
Endocr J ; 64(6): 633-638, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28392548

ABSTRACT

Retinoic acid (RA) is converted from retinal by retinaldehyde dehydrogenases (RALDHs) and is an essential signaling molecule in embryonic and adult tissue. We previously reported that RALDH1 was produced in the rat anterior pituitary gland and hypothesized that RA was generated in the gland. Midkine (MK) is an RA-inducible growth factor, and MK production in the rat anterior pituitary gland was recently reported. However, the mechanism that regulates gene expression of MK in the pituitary gland has not been determined. To investigate regulation of MK production in the anterior pituitary gland, we analyzed changes in MK mRNA in cultured rat anterior pituitary cells. We identified MK-expressing cells by double-staining with in situ hybridization and immunohistochemical techniques for RALDH1. MK mRNA was expressed in RALDH1-producing cells in the anterior pituitary gland. Using isolated anterior pituitary cells of rats, we examined the effect of RA on gene expression of MK. Quantitative real-time PCR revealed that 72 h exposure to a concentration of 10-6 M of retinal and all-trans retinoic acid increased MK mRNA levels by about 2-fold. Moreover, the stimulatory effect of all-trans retinoic acid was mimicked by the RA receptor agonist Am80. This is the first report to show that RA is important in regulating MK expression in rat anterior pituitary gland.


Subject(s)
Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/agonists , Nerve Growth Factors/agonists , Pituitary Gland, Anterior/metabolism , Retinal Dehydrogenase/metabolism , Tretinoin/metabolism , Up-Regulation , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/pharmacology , Aldehyde Dehydrogenase 1 Family , Animals , Benzoates/pharmacology , Cells, Cultured , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Male , Midkine , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Pituitary Gland, Anterior/cytology , Pituitary Gland, Anterior/drug effects , Pyrimidines/pharmacology , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Retinoic Acid/agonists , Receptors, Retinoic Acid/metabolism , Retinal Dehydrogenase/genetics , Retinaldehyde/metabolism , Signal Transduction/drug effects , Tetrahydronaphthalenes/pharmacology , Up-Regulation/drug effects
7.
Endocr J ; 63(6): 555-61, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27052215

ABSTRACT

Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.


Subject(s)
Growth Hormone/metabolism , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , Receptors, Ghrelin/genetics , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Tretinoin/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Male , Rats , Rats, Wistar , Time Factors
8.
Acta Histochem Cytochem ; 48(6): 185-92, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26855451

ABSTRACT

The extracellular matrix (ECM) is important in creating cellular environments in tissues. Recent studies have demonstrated that ECM components are localized in anterior pituitary cells and affect cell activity. Thus, clarifying the mechanism responsible for ECM maintenance would improve understanding of gland function. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases and participate in ECM degradation. In this study, we investigated whether cells expressing TIMPs are present in rat anterior pituitary gland. Reverse transcription polymerase chain reaction was used to analyze expression of the TIMP family (TIMP1-4), and cells producing TIMPs in the gland were identified by using in situ hybridization. Expression of TIMP1, TIMP2, and TIMP3 mRNAs was detected, and the TIMP-expressing cells were located in the gland. The TIMP-expressing cells were also investigated by means of double-staining with in situ hybridization and immunohistochemical techniques. Double-staining revealed that TIMP1 mRNA was expressed in folliculostellate cells. TIMP2 mRNA was detected in folliculostellate cells, prolactin cells, and thyroid-stimulating hormone cells. TIMP3 mRNA was identified in endothelial cells, pericytes, novel desmin-immunopositive perivascular cells, and folliculostellate cells. These findings indicate that TIMP1-, TIMP2-, and TIMP3-expressing cells are present in rat anterior pituitary gland and that they are involved in maintaining ECM components.

9.
Cell Tissue Res ; 359(3): 909-14, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25519047

ABSTRACT

Midkine (MK) belongs to a family of secreted heparin-binding growth factors and is highly expressed in various tissues during development. MK has multiple functions, such as regulation of cell proliferation, migration, survival and differentiation. We recently reported that MK mRNA is strongly expressed in the developing rat pituitary gland. In the adult pituitary, however, expression of MK and its receptor and the characteristics of the cells that produce them, have not been determined. Therefore, in this study, we investigate whether MK and its receptor, protein tyrosine phosphatase receptor-type Z (Ptprz1), are present in the adult rat pituitary. In situ hybridization, real-time reverse transcription-PCR and immunoblotting were performed to assess MK and Ptprz1 expression. We also characterize MK- and Ptprz1-expressing cells by double-staining with in situ hybridization and immunohistochemical techniques for each pituitary hormone or S100 protein [a marker of folliculostellate (FS) cells]. MK-expressing cells were located in the anterior and posterior lobes but not in the intermediate lobe. Double-staining and immunoblotting revealed that MK mRNA and protein were only expressed in FS cells in the anterior pituitary. Regarding Ptprz1 expression, Ptprz1 mRNA was detected in adrenocorticotropic hormone (ACTH) cells and growth hormone (GH) cells but not in prolactin cells, thyroid-stimulating hormone cells, luteinizing hormone cells, or FS cells. These findings suggest that MK produced in FS cells acts locally on ACTH cells and GH cells via Ptprz1 in the adult rat anterior pituitary.


Subject(s)
Aging/metabolism , Cytokines/metabolism , Heparin/metabolism , Pituitary Gland/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Animals , Cytokines/genetics , In Situ Hybridization , Male , Midkine , Pituitary Gland/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar
10.
Cell Tissue Res ; 357(1): 337-44, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24816986

ABSTRACT

Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with digoxigenin-labeled cRNA probes, we detected cells expressing MK and PTN in the developing rat pituitary gland. At embryonic day 12.5 (E12.5), MK expression was localized in Rathke's pouch (derived from the oral ectoderm) and in the neurohypophyseal bud (derived from the diencephalon). From E12.5 to E19.5, MK mRNA was expressed in the developing neurohypophysis, and expression gradually decreased in the developing adenohypophysis. To characterize MK-expressing cells, we performed double-staining of MK mRNA and anterior pituitary hormones. At E19.5, no MK-expressing cells were stained with any hormone. In contrast, PTN was expressed only in the neurohypophysis primordium during all embryonic stages. In situ hybridization clearly showed that MK was expressed in primitive (immature/undifferentiated) adenohypophyseal cells and neurohypophyseal cells, whereas PTN was expressed only in neurohypophyseal cells. Thus, MK and PTN might play roles as signaling molecules during pituitary development.


Subject(s)
Carrier Proteins/biosynthesis , Cytokines/biosynthesis , Pituitary Gland/metabolism , Animals , Carrier Proteins/genetics , Cytokines/genetics , Female , In Situ Hybridization , Midkine , Pituitary Gland/embryology , Pregnancy , Rats , Rats, Wistar
11.
Acta Histochem Cytochem ; 47(5): 239-45, 2014.
Article in English | MEDLINE | ID: mdl-25861130

ABSTRACT

The anterior pituitary gland is organized tissue comprising hormone-producing cells and folliculostellate (FS) cells. FS cells interconnect to form a meshwork, and their cytoplasmic processes are anchored by a basement membrane containing laminin. Recently, we developed a three-dimensional (3D) cell culture that reproduces this FS cell architecture. In this study of the novel function of FS cells, we used transgenic rats that express green fluorescent protein in FS cells for the 3D culture. Anterior pituitary cells were cultured with different proportions of FS cells (0%, 5%, 10%, and 20%). Anterior pituitary cells containing 5-20% FS cells formed round/oval cell aggregates, whereas amorphous cell aggregates were formed in the absence of FS cells. Interestingly, immunohistochemistry showed laminin-immunopositive cells instead of extracellular laminin deposition in FS cell-deficient cell aggregates. Double-immunostaining revealed that these laminin-immunopositive cells were gonadotrophs. Laminin mRNA expression did not differ in relation to the presence or absence of FS cells. When anterior pituitary cells with no FS cells were cultured with FS cell-conditioned medium, the proportion of laminin-immunopositive cells was lower than in control. These results suggest that a humoral factor from FS cells is required for laminin release from gonadotrophs.

SELECTION OF CITATIONS
SEARCH DETAIL
...