Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Metab Syndr Relat Disord ; 21(4): 222-230, 2023 05.
Article in English | MEDLINE | ID: mdl-37083405

ABSTRACT

Background: Pediatric studies have shown associations between hepatic steatosis and total body fat, visceral fat, and lean mass. However, these associations have not been assessed simultaneously, leaving their relative importance unknown. Objective: To evaluate associations between hepatic steatosis and total-body adiposity, visceral adiposity, and lean mass in children. Method: In children at risk for fatty liver, hepatic steatosis, adipose, and lean mass were estimated with magnetic resonance imaging and dual-energy X-ray absorptiometry. Results: Two hundred twenty-seven children with mean age 12.1 years had mean percent body fat of 38.9% and mean liver fat of 8.4%. Liver fat was positively associated with total-body adiposity, visceral adiposity, and lean mass (P < 0.001), and negatively associated with lean mass percentage (P < 0.001). After weight adjustment, liver fat was only positively associated with measures of central adiposity (P < 0.001). Visceral adiposity also had the strongest association with liver fat (P < 0.001). Conclusions: In children, hepatic steatosis is more strongly associated with visceral adiposity than total adiposity, and the association of lean mass is not independent of weight or fat mass. These relationships may help guide the choice of future interventions to target hepatic steatosis.


Subject(s)
Adiposity , Fatty Liver , Humans , Child , Fatty Liver/diagnostic imaging , Fatty Liver/epidemiology , Liver/metabolism , Obesity/metabolism , Intra-Abdominal Fat/metabolism , Magnetic Resonance Imaging , Obesity, Abdominal/complications , Obesity, Abdominal/diagnostic imaging , Obesity, Abdominal/metabolism , Muscles/pathology
3.
Alzheimers Res Ther ; 13(1): 6, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397489

ABSTRACT

BACKGROUND: Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein aggregation. A lead MT, called CLR01, has been demonstrated to inhibit the aggregation and toxicity of multiple amyloidogenic proteins in vitro and in vivo. Previously, we evaluated the effect of CLR01 in the 3 × Tg mouse model of Alzheimer's disease, which overexpresses mutant human presenilin 1, amyloid ß-protein precursor, and tau and found that subcutaneous administration of the compound for 1 month led to a robust reduction of amyloid plaques, neurofibrillary tangles, and microgliosis. CLR01 also has been demonstrated to inhibit tau aggregation in vitro and tau seeding in cell culture, yet because in Alzheimer's disease (AD) and in the 3 × Tg model, tau hyperphosphorylation and aggregation are thought to be downstream of Aß insults, the study in this model left open the question whether CLR01 affected tau in vivo directly or indirectly. METHODS: To determine if CLR01 could ameliorate tau pathology directly in vivo, we tested the compound similarly using the P301S-tau (line PS19) mouse model. Mice were administered 0.3 or 1.0 mg/kg per day CLR01 and tested for muscle strength and behavioral deficits, including anxiety- and disinhibition-like behavior. Their brains then were analyzed by immunohistochemical and biochemical assays for pathological forms of tau, neurodegeneration, and glial pathology. RESULTS: CLR01 treatment ameliorated muscle-strength deterioration, anxiety-, and disinhibition-like behavior. Improved phenotype was associated with decreased levels of pathologic tau forms, suggesting that CLR01 exerts a direct effect on tau in vivo. Limitations of the study included a relatively short treatment period of the mice at an age in which full pathology is not yet developed. In addition, high variability in this model lowered the statistical significance of the findings of some outcome measures. CONCLUSIONS: The findings suggest that CLR01 is a particularly attractive candidate for the treatment of AD because it targets simultaneously the two major pathogenic proteins instigating and propagating the disease, amyloid ß-protein (Aß), and tau, respectively. In addition, our study suggests that CLR01 can be used for the treatment of other tauopathies in the absence of amyloid pathology.


Subject(s)
Alzheimer Disease , tau Proteins , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Peptides , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Neurofibrillary Tangles , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL