Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Pediatr Dermatol ; 40(6): 1094-1096, 2023.
Article in English | MEDLINE | ID: mdl-36973173

ABSTRACT

Tricho-dento-osseous syndrome (TDOS) is a rare ectodermal dysplasia caused by mutations in the DLX3 gene and it is not usually included as a cause of syndromic woolly hair. We present a new case of TDOS with a novel DLX3 variant and woolly hair.


Subject(s)
Hair Diseases , Transcription Factors , Humans , Transcription Factors/genetics , Homeodomain Proteins/genetics , Hair Diseases/diagnosis , Hair Diseases/genetics , Hair
2.
Am J Med Genet A ; 188(10): 2879-2887, 2022 10.
Article in English | MEDLINE | ID: mdl-35920354

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI) refers to a large and genetically heterogenous group of non-syndromic disorders of cornification featuring diffuse scaling. Ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis (ILVASC) syndrome is a rare autosomal recessive syndromic form of ichthyosis. The disease usually results from premature termination codon-causing pathogenic variants in CLDN1 encoding CLAUDIN-1 (CLDN1). We used whole exome sequencing (WES), Sanger sequencing, 3D protein modeling, Western blotting, and immunofluorescence confocal microscopy to delineate the genetic basis of ichthyosis in two siblings with ichthyosis but no other ectodermal abnormalities. One of the two siblings underwent liver transplantation in early childhood due to biliary atresia. Both patients were found to carry a homozygous missense pathogenic variant, c.242G>A (p.Arg81His), in CLDN1. The variant resulted in decreased CLDN1 expression in patient skin. 3D protein modeling predicted that p.Arg81His induces deleterious conformational changes. Accordingly, HaCaT cells transfected with a construct expressing the mutant CLDN1 cDNA featured decreased levels and mislocation of CLDN1 as compared with cells expressing the wildtype cDNA. In conclusion, we describe the first pathogenic missense variant in CLDN1 shown to result in ARCI.


Subject(s)
Ichthyosis , Child, Preschool , Claudin-1/genetics , Codon, Nonsense , DNA, Complementary , Humans , Ichthyosis/diagnosis , Ichthyosis/genetics , Mutation , Mutation, Missense/genetics
3.
Br J Dermatol ; 187(3): 392-400, 2022 09.
Article in English | MEDLINE | ID: mdl-35606927

ABSTRACT

BACKGROUND: The coexistence of pachyonychia congenita (PC) and hidradenitis suppurativa (HS) has been described in case reports. However, the pathomechanism underlying this association and its true prevalence are unknown. OBJECTIVES: To determine the genetic defect underlying the coexistence of PC and HS in a large kindred, to delineate a pathophysiological signalling defect jointly leading to both phenotypes, and to estimate the prevalence of HS in PC. METHODS: We used direct sequencing and a NOTCH luciferase reporter assay to characterize the pathophysiological basis of the familial coexistence of HS and PC. A questionnaire was distributed to patients with PC registered with the International Pachyonychia Congenita Research Registry (IPCRR) to assess the prevalence of HS among patients with PC. RESULTS: Direct sequencing of DNA samples obtained from family members displaying both PC and HS demonstrated a missense variant (c.275A>G) in KRT17, encoding keratin 17. Abnormal NOTCH signalling has been suggested to contribute to HS pathogenesis. Accordingly, the KRT17 c.275A>G variant resulted in a significant decrease in NOTCH activity. To ascertain the clinical importance of the association of HS with PC, we distributed a questionnaire to all patients with PC registered with the IPCRR. Seventy-two of 278 responders reported HS-associated clinical features (25·9%). Disease-causing mutations in KRT17 were most prevalent among patients with a dual phenotype of PC and HS (43%). CONCLUSIONS: The coexistence of HS and KRT17-associated PC is more common than previously thought. Impaired NOTCH signalling as a result of KRT17 mutations may predispose patients with PC to HS. What is already known about this topic? The coexistence of pachyonychia congenita (PC) and hidradenitis suppurativa (HS) has been described in case reports. However, the pathomechanism underlying this association and its true prevalence are unknown. What does this study add? A dual phenotype consisting of PC and HS was found to be associated with a pathogenic variant in KRT17. This variant was found to affect NOTCH signalling, which has been previously implicated in HS pathogenesis. HS was found to be associated with PC in a large cohort of patients with PC, especially in patients carrying KRT17 variants, suggesting that KRT17 variants causing PC may also predispose to HS. What is the translational message? These findings suggest that patients with PC have a higher prevalence of HS than previously thought, and hence physicians should have a higher level of suspicion of HS diagnosis in patients with PC.


Subject(s)
Hidradenitis Suppurativa , Pachyonychia Congenita , Hidradenitis Suppurativa/complications , Hidradenitis Suppurativa/genetics , Humans , Keratin-17/genetics , Mutation/genetics , Pachyonychia Congenita/complications , Pachyonychia Congenita/diagnosis , Pachyonychia Congenita/genetics , Phenotype
4.
Sci Rep ; 12(1): 5958, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35396567

ABSTRACT

Pemphigus vulgaris (PV) is a life-threatening autoimmune mucocutaneous blistering disease which is to a large extent genetically determined, and results, at least in part, from the deleterious activity of autoantibodies directed against desmoglein (DSG)3, a prominent intra-epidermal adhesion molecule. Those autoantibodies lead to decreased membranal DSG3 expression in keratinocytes (KCs), thereby destabilizing cell-cell adhesion within the epidermis and leading to blister formation. We previously showed that rs17315309, a strong risk variant for PV within the promoter of the ST18 transcription factor gene, promotes epidermal ST18 up-regulation in a p53/p63-dependent manner. Accordingly, ST18 was found to be overexpressed in the skin of PV patients. Increased ST18 expression was then shown to markedly augment PV autoantibodies-mediated loss of KCs cohesion. Here, we demonstrate that ST18 overexpression significantly increases autoantibody-mediated DSG3 down-regulation in keratinocytes. In addition, DSG3 decreased expression boosts p53 function through p38 mitogen-activated protein kinase (p38MAPK) activation and dramatically augments p53-dependent ST18 promoter activity. Finally, the PV risk variant rs17315309 is associated with increased p53 expression in PV skin. Taken collectively, these observations reveal a novel self-amplifying pathomechanism involving ST18, DSG3, p38 and p53, capable of perpetuating disease activity, and therefore indicative of novel actionable molecular targets in PV.


Subject(s)
Desmoglein 3 , Pemphigus , Repressor Proteins , Tumor Suppressor Protein p53 , Autoantibodies , Blister , Desmoglein 3/genetics , Desmoglein 3/metabolism , Humans , Keratinocytes/metabolism , Pemphigus/genetics , Pemphigus/metabolism , Repressor Proteins/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Genet Med ; 24(5): 1085-1095, 2022 05.
Article in English | MEDLINE | ID: mdl-35168889

ABSTRACT

PURPOSE: Palmoplantar keratodermas (PPKs) form a group of disorders characterized by thickening of palm and sole skin. Over the past 2 decades, many types of inherited PPKs have been found to result from abnormal expression, processing, or function of adhesion proteins. METHODS: We used exome and direct sequencing to detect causative pathogenic variants. Functional analysis of these variants was conducted using reverse transcription quantitative polymerase chain reaction, immunofluorescence confocal microscopy, immunoblotting, a promoter reporter assay, and chromatin immunoprecipitation. RESULTS: We identified 2 heterozygous variants (c.1226A>G and c.633_634dupGT) in KLF4 in 3 individuals from 2 different unrelated families affected by a dominant form of PPK. Immunofluorescence staining for a number of functional markers revealed reduced epidermal DSG1 expression in patients harboring heterozygous KLF4 variants. Accordingly, human keratinocytes either transfected with constructs expressing these variants or downregulated for KLF4 displayed reduced DSG1 expression, which in turn has previously been found to be associated with PPK. A chromatin immunoprecipitation assay confirmed direct binding of KLF4 to the DSG1 promoter region. The ability of mutant KLF4 to transactivate the DSG1 promoter was significantly decreased when compared with wild-type KLF4. CONCLUSION: Loss-of-function variants in KLF4 cause a novel form of dominant PPK and show its importance in the regulation of epidermal differentiation.


Subject(s)
Keratoderma, Palmoplantar , Humans , Exome Sequencing , Heterozygote , Keratoderma, Palmoplantar/diagnosis , Keratoderma, Palmoplantar/pathology
6.
Exp Dermatol ; 30(9): 1290-1297, 2021 09.
Article in English | MEDLINE | ID: mdl-33786896

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI) is a rare and heterogeneous skin cornification disorder presenting with generalized scaling and varying degrees of erythema. Clinical manifestations range from lamellar ichthyosis (LI), congenital ichthyosiform erythroderma (CIE) through the most severe form of ARCI, Harlequin ichthyosis (HI). We used homozygosity mapping, whole-exome and direct sequencing to delineate the relative distribution of pathogenic variants as well as identify genotype-phenotype correlations in a cohort of 62 Middle Eastern families with ARCI of various ethnic backgrounds. Pathogenic variants were identified in most ARCI-associated genes including TGM1 (21%), CYP4F22 (18%), ALOX12B (14%), ABCA12 (10%), ALOXE3 (6%), NIPAL4 (5%), PNPLA1 (3%), LIPN (2%) and SDR9C7 (2%). In 19% of cases, no mutation was identified. Our cohort revealed a higher prevalence of CYP4F22 and ABCA12 pathogenic variants and a lower prevalence of TGM1 and NIPAL4 variants, as compared to data obtained in other regions of the world. Most variants (89%) in ALOX12B were associated with CIE and were the most common cause of ARCI among patients of Muslim origin (26%). Palmoplantar keratoderma associated with fissures was exclusively a result of pathogenic variants in TGM1. To our knowledge, this is the largest cohort study of ARCI in the Middle-Eastern population reported to date. Our data demonstrate the importance of population-tailored mutation screening strategies and shed light upon specific genotype-phenotype correlations.


Subject(s)
Ichthyosiform Erythroderma, Congenital/epidemiology , Ichthyosiform Erythroderma, Congenital/genetics , Cohort Studies , Genotype , Humans , Middle East/epidemiology , Molecular Epidemiology , Mutation , Phenotype
7.
Genet Med ; 22(7): 1227-1234, 2020 07.
Article in English | MEDLINE | ID: mdl-32336749

ABSTRACT

PURPOSE: Localized autosomal recessive hypotrichosis (LAH) has been associated with pathogenic variants in DSG4, encoding a desmosomal protein as well as in LIPH and LPAR6, encoding respectively lipase H, which catalyzes the formation of 2-acyl-lysophosphatidic acid (LPA), and lysophosphatidic acid receptor 6, a receptor for LPA. LPA promotes hair growth and differentiation. In this study we aimed at delineating the genetic basis of LAH in patients without pathogenic variants in these three genes. METHODS: Variant analysis was conducted using exome and direct sequencing. We then performed quantitative reverse transcription polymerase chain reaction (RT-qPCR), immunofluorescence staining, immunoblotting, enzymatic, and coimmunoprecipitation assays to evaluate the consequences of potential etiologic variants. RESULTS: We identified homozygous variants in C3ORF52 in four individuals with LAH. C3ORF52 was found to be coexpressed with lipase H in the inner root sheath of the hair follicle and the two proteins were found to directly interact. The LAH-causing variants were associated with decreased C3ORF52 expression and resulted in markedly reduced lipase H-mediated LPA biosynthesis. CONCLUSION: LAH can be caused by abnormal function of at least three proteins which are necessary for proper LPA biosynthesis.


Subject(s)
Hypotrichosis , Alopecia , Desmogleins/genetics , Genes, Recessive , Homozygote , Humans , Hypotrichosis/genetics , Lysophospholipids , Pedigree , Receptors, Lysophosphatidic Acid/genetics
8.
J Invest Dermatol ; 140(11): 2178-2187, 2020 11.
Article in English | MEDLINE | ID: mdl-32247861

ABSTRACT

Inherited palmoplantar keratodermas refer to a large and heterogeneous group of conditions resulting from abnormal epidermal differentiation and featuring thickening of the skin of the palms and soles. Here, we aimed at delineating the genetic basis of an autosomal recessive form of palmoplantar keratodermas manifesting with erythematous hyperkeratotic plaques over the palms and soles, extending to non-palmoplantar areas. Whole-exome sequencing in affected individuals revealed homozygous nonsense variants in the SERPINA12 gene. SERPINA12 encodes the visceral adipose tissue-derived serpin A12, a serine protease inhibitor. The pathogenic variants were found to result in reduced visceral adipose tissue-derived serpin A12 expression in patients' skin biopsies in comparison to healthy controls. In addition, SERPINA12 downregulation in three-dimensional skin equivalents was associated with marked epidermal acanthosis and hyperkeratosis, replicating the human phenotype. Moreover, decreased SERPINA12 expression resulted in reduced visceral adipose tissue-derived serpin A12-mediated inhibition of kallikrein 7 activity as well as decreased levels of desmoglein-1 and corneodesmosin, two known kallikrein 7 substrates, which are required for normal epidermal differentiation. The present data, taken collectively, demarcate a unique type of autosomal recessive palmoplantar keratodermas, attribute to visceral adipose tissue-derived serpin A12 a role in skin biology, and emphasize the importance of mechanisms regulating proteolytic activity for normal epidermal differentiation.


Subject(s)
Keratoderma, Palmoplantar/genetics , Mutation , Serpins/genetics , Child , Child, Preschool , Female , Humans , Kallikreins/antagonists & inhibitors , Keratoderma, Palmoplantar/etiology , Keratoderma, Palmoplantar/pathology , Serpins/deficiency , Serpins/physiology , Exome Sequencing
9.
N Engl J Med ; 380(9): 833-841, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30763140

ABSTRACT

BACKGROUND: Central centrifugal cicatricial alopecia (CCCA) is the most common form of scarring alopecia among women of African ancestry. The disease is occasionally observed to affect women in families in a manner that suggests an autosomal dominant trait and usually manifests clinically after intense hair grooming. We sought to determine whether there exists a genetic basis of CCCA and, if so, what it is. METHODS: We used exome sequencing in a group of women with alopecia (discovery set), compared the results with those in a public repository, and applied other filtering criteria to identify candidate genes. We then performed direct sequencing to identify disease-associated DNA variations and RNA sequencing, protein modeling, immunofluorescence staining, immunoblotting, and an enzymatic assay to evaluate the consequences of potential etiologic mutations. We used a replication set that consisted of women with CCCA to confirm the data obtained with the discovery set. RESULTS: In the discovery set, which included 16 patients, we identified one splice site and three heterozygous missense mutations in PADI3 in 5 patients (31%). (The approximate prevalence of the disease is up to 5.6%.) PADI3 encodes peptidyl arginine deiminase, type III (PADI3), an enzyme that post-translationally modifies other proteins that are essential to hair-shaft formation. All three CCCA-associated missense mutations in PADI3 affect highly conserved residues and are predicted to be pathogenic; protein modeling suggests that they result in protein misfolding. These mutations were found to result in reduced PADI3 expression, abnormal intracellular localization of the protein, and decreased enzymatic activity - findings that support their pathogenicity. Immunofluorescence staining showed decreased expression of PADI3 in biopsy samples of scalp skin obtained from patients with CCCA. We then directly sequenced PADI3 in an additional 42 patients (replication set) and observed genetic variants in 9 of them. A post hoc analysis of the combined data sets showed that the prevalence of PADI3 mutation was higher among patients with CCCA than in a control cohort of women of African ancestry (P = 0.002 by the chi-square test; P = 0.006 by Fisher's exact test; and after adjustment for relatedness of persons, P = 0.03 and P = 0.04, respectively). CONCLUSIONS: Mutations in PADI3, which encodes a protein that is essential to proper hair-shaft formation, were associated with CCCA. (Funded by the Ram Family Foundation and others.).


Subject(s)
Alopecia/genetics , Black or African American/genetics , Genetic Predisposition to Disease , Hair/growth & development , Mutation , Protein-Arginine Deiminases/genetics , Adolescent , Adult , Age of Onset , Alopecia/ethnology , Chi-Square Distribution , Cicatrix/genetics , Exome , Female , Heterozygote , Humans , Middle Aged , Mutagenesis , Pedigree , Protein-Arginine Deiminase Type 3 , Protein-Arginine Deiminases/metabolism , Scalp/pathology , Sequence Analysis, DNA
10.
J Allergy Clin Immunol ; 143(1): 173-181.e10, 2019 01.
Article in English | MEDLINE | ID: mdl-30248356

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a highly prevalent chronic inflammatory skin disease that is known to be, at least in part, genetically determined. Mutations in caspase recruitment domain-containing protein 14 (CARD14) have been shown to result in various forms of psoriasis and related disorders. OBJECTIVE: We aimed to identify rare DNA variants conferring a significant risk for AD through genetic and functional studies in a cohort of patients affected with severe AD. METHODS: Whole-exome and direct gene sequencing, immunohistochemistry, real-time PCR, ELISA, and functional assays in human keratinocytes were used. RESULTS: In a cohort of patients referred with severe AD, DNA sequencing revealed in 4 patients 2 rare heterozygous missense mutations in the gene encoding CARD14, a major regulator of nuclear factor κB (NF-κB). A dual luciferase reporter assay demonstrated that both mutations exert a dominant loss-of-function effect and result in decreased NF-κB signaling. Accordingly, immunohistochemistry staining showed decreased expression of CARD14 in patients' skin, as well as decreased levels of activated p65, a surrogate marker for NF-κB activity. CARD14-deficient or mutant-expressing keratinocytes displayed abnormal secretion of key mediators of innate immunity. CONCLUSIONS: Although dominant gain-of-function mutations in CARD14 are associated with psoriasis and related diseases, loss-of-function mutations in the same gene are associated with a severe variant of AD.


Subject(s)
CARD Signaling Adaptor Proteins , Dermatitis, Atopic , Guanylate Cyclase , Keratinocytes , Loss of Function Mutation , Membrane Proteins , Mutation, Missense , Signal Transduction/genetics , Adolescent , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Female , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , HEK293 Cells , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Severity of Illness Index , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
11.
J Bacteriol ; 191(16): 5196-204, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19525351

ABSTRACT

Halophilic archaea were found to contain in their cytoplasm millimolar concentrations of gamma-glutamylcysteine (gamma GC) instead of glutathione. Previous analysis of the genome sequence of the archaeon Halobacterium sp. strain NRC-1 has indicated the presence of a sequence homologous to sequences known to encode the glutamate-cysteine ligase GshA. We report here the identification of the gshA gene in the extremely halophilic archaeon Haloferax volcanii and show that H. volcanii gshA directs in vivo the synthesis and accumulation of gamma GC. We also show that the H. volcanii gene when expressed in an Escherichia coli strain lacking functional GshA is able to restore synthesis of glutathione.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/physiology , Glutamate-Cysteine Ligase/chemistry , Glutamate-Cysteine Ligase/physiology , Haloferax volcanii/enzymology , Amino Acid Sequence , Archaeal Proteins/classification , Archaeal Proteins/genetics , Chromatography, High Pressure Liquid , Dipeptides/metabolism , Gene Expression Regulation, Archaeal/genetics , Gene Expression Regulation, Archaeal/physiology , Genetic Complementation Test , Glutamate-Cysteine Ligase/classification , Glutamate-Cysteine Ligase/genetics , Haloferax volcanii/genetics , Haloferax volcanii/metabolism , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...