Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 20(10): 1670-80, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22863569

ABSTRACT

Dynein ATPases are the largest known cytoskeletal motors and perform critical functions in cells: carrying cargo along microtubules in the cytoplasm and powering flagellar beating. Dyneins are members of the AAA+ superfamily of ring-shaped enzymes, but how they harness this architecture to produce movement is poorly understood. Here, we have used cryo-EM to determine 3D maps of native flagellar dynein-c and a cytoplasmic dynein motor domain in different nucleotide states. The structures show key sites of conformational change within the AAA+ ring and a large rearrangement of the "linker" domain, involving a hinge near its middle. Analysis of a mutant in which the linker "undocks" from the ring indicates that linker remodeling requires energy that is supplied by interactions with the AAA+ modules. Fitting the dynein-c structures into flagellar tomograms suggests how this mechanism could drive sliding between microtubules, and also has implications for cytoplasmic cargo transport.


Subject(s)
Adenosine Triphosphate/chemistry , Axonemal Dyneins/chemistry , Chlamydomonas reinhardtii/enzymology , Dictyostelium/enzymology , Adenosine Diphosphate/chemistry , Axonemal Dyneins/ultrastructure , Axoneme/ultrastructure , Cryoelectron Microscopy , Microscopy, Video , Microtubules/chemistry , Microtubules/ultrastructure , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/ultrastructure , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/ultrastructure , Structural Homology, Protein
2.
Proc Natl Acad Sci U S A ; 108(45): 18266-71, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-22021443

ABSTRACT

A defect in germ-cell (sperm and oocyte) development is the leading cause of male and female infertility. Control of translation through the binding of deleted in azoospermia (DAZ)-like (DAZL) to the 3'-UTRs of mRNAs, via a highly conserved RNA recognition motif (RRM), has been shown to be essential in germ-cell development. Crystal structures of the RRM from murine DAZL (Dazl), both alone and in complex with RNA sequences from the 3'-UTRs of mRNAs regulated by Dazl, reveal high-affinity sequence-specific recognition of a GUU triplet involving an extended, kinked, pair of ß-strands. Recognition of the GUU triplet is maintained, whereas the identity and position of bases flanking this triplet varies. The Dazl RRM is thus able to recognize GUU triplets in different sequence contexts. Mutation of bases within the GUU triplet reduces the affinity of binding. Together with the demonstration that multiple Dazl RRMs can bind to a single RNA containing multiple GUU triplets, these structures suggest that the number of DAZL molecules bound to GUU triplets in the 3'-UTR provides a method for modulating the translation of a target RNA. The conservation of RNA binding and structurally important residues between members of the DAZ family, together with the demonstration that mutation of these residues severely impairs RNA binding, indicate that the mode of RNA binding revealed by these structures is conserved in proteins essential for gamete development from flies to humans.


Subject(s)
Germ Cells/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Amino Acid Sequence , Animals , Mice , Models, Molecular , Molecular Sequence Data , Mutation , Polymorphism, Single Nucleotide , Protein Binding , RNA, Messenger/chemistry , RNA-Binding Proteins/chemistry , Sequence Homology, Amino Acid
3.
Cell ; 136(3): 485-95, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203583

ABSTRACT

Dynein ATPases power diverse microtubule-based motilities. Each dynein motor domain comprises a ring-like head containing six AAA+ modules and N- and C-terminal regions, together with a stalk that binds microtubules. How these subdomains are arranged and generate force remains poorly understood. Here, using electron microscopy and image processing of tagged and truncated Dictyostelium cytoplasmic dynein constructs, we show that the heart of the motor is a hexameric ring of AAA+ modules, with the stalk emerging opposite the primary ATPase site (AAA1). The C-terminal region is not an integral part of the ring but spans between AAA6 and near the stalk base. The N-terminal region includes a lever-like linker whose N terminus swings by approximately 17 nm during the ATPase cycle between AAA2 and the stalk base. Together with evidence of stalk tilting, which may communicate changes in microtubule binding affinity, these findings suggest a model for dynein's structure and mechanism.


Subject(s)
Dictyostelium/ultrastructure , Dyneins/metabolism , Protozoan Proteins/metabolism , Animals , Dictyostelium/metabolism , Dyneins/ultrastructure , Green Fluorescent Proteins/metabolism , Microscopy, Electron , Protozoan Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...