Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 10(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34827353

ABSTRACT

Acholeplasma (A.) laidlawii is an opportunistic pathogen with the ability to disseminate resistance determinants to antibiotics; however, its resistance to macrolides has been less studied. The aim of the present study was to characterize the mechanisms responsible for the resistance to macrolides, tiamulin and lincomycin found in a strain of A. laidlawii isolated from a pig with pneumonia. MICs of erythromycin, 15- and 16-membered macrolides, tiamulin and lincomycin were determined by microdilution method with and without reserpine, an inhibitor of ABC efflux pumps and regions of the genome were sequenced. Reserpine only decreased lincomycin MIC but it did not change the MICs of macrolides and tiamulin. The analysis of the DNA sequence of 23S rRNA showed nucleotide substitutions at eight different positions, although none of them were at positions previously related to macrolide resistance. Five mutations were found in the L22 protein, one of them at the stop codon. In addition, two mutations were found in the amino acid sequence of L4. The combination of multiple mutations in the ribosomal proteins L22 and L4 together with substitutions in 23S rRNA DNA sequence was associated with the resistance to macrolides, the pleuromutilin and lincomycin in the studied A. laidlawii strain.

2.
J Antimicrob Chemother ; 75(12): 3568-3575, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32989461

ABSTRACT

BACKGROUND: MDR bacterial infections are currently a serious problem for clinicians worldwide. Klebsiella pneumoniae and Enterobacter spp., among Enterobacteriaceae, and Pseudomonas aeruginosa, are part of the group of ESCAPE pathogens or bacteria that 'escape' from common antibacterial treatments. The lack of effectiveness of the first common line of antibiotics has led to the search for new therapies based on older antibiotics, such as colistin. OBJECTIVES: We searched for new enhancers of the action of colistin against MDR Gram-negative bacteria that can be easily applicable to clinical treatments. METHODS: Colistin MICs were determined alone and with the protonophores CCCP, sodium benzoate, sodium salicylate and aspirin using the broth microdilution method and FIC indexes were calculated to assess synergy between colistin and each chemical. Time-kill assays of colistin with and without protonophores were performed to determine the bactericidal action of combinations of colistin with protonophores. Likewise, the effect of sucrose, l-arginine and l-glutamic acid on the MICs of colistin alone and combined with each protonophore was assessed. RESULTS: It was found that sodium benzoate, sodium salicylate and aspirin, at concentrations allowed for human and animal use, partially or totally reversed resistance to colistin in P. aeruginosa and highly resistant enterobacterial strains. The mechanism of action could be related to their negative charge at a physiological pH along with their lipid-soluble character. CONCLUSIONS: Sodium benzoate, sodium salicylate and aspirin are good enhancers to use in antibiotic therapies that include colistin.


Subject(s)
Colistin , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Aspirin/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae , Humans , Microbial Sensitivity Tests , Sodium Benzoate , Sodium Salicylate
SELECTION OF CITATIONS
SEARCH DETAIL
...