Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(2): 023602, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004012

ABSTRACT

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T_{1}>10 ms, and the coherence time, T_{2}^{*} reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.

2.
Opt Express ; 22(16): 19653-61, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25321048

ABSTRACT

Helium-ion-induced radiation damage in a LiNbO3-thin-film (10 µm-thick) modulator is experimentally investigated. The results demonstrate a degradation of the device performance in the presence of He(+) irradiation at doses of ≥ 10(16) cm(-2). The experiments also show that the presence of the He(+) stopping region, which determines the degree of overlap between the ion-damaged region and the guided optical mode, plays a major role in determining the degree of degradation in modulation performance. Our measurements showed that the higher overlap can lead to an additional ~5.5 dB propagation loss. The irradiation-induced change of crystal-film anisotropy(n(o)-n(e))of ~36% was observed for the highest dose used in the experiments. The relevant device extinction ratio, V(π)L, and device insertion loss, as well the damage mechanisms of each of these parameters are also reported and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...