Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 21(4): 2660-2667, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33500090

ABSTRACT

Cobalt oxide has been widely investigated among potential transition metal oxides for the electrochemical energy conversion, storage, and water splitting. However, they have inherently low electronic conductivity and high corrosive nature in alkaline media. Herein, we propose a promising and facile approach to improve the conductivity and charge transport of cobalt oxide Co3O4 through chemical coupling with well-dispersed multiwall carbon nanotubes (MWCNTs) during hydrothermal treatment. The morphology of prepared composite material consisting of nanosheets which are anchored on the MWCNTs as confirmed by scanning electron microscopy (SEM). A cubic crystalline system is exhibited by the cobalt oxide as confirmed by the X-ray diffraction study. The Co, O, and C are the only elements present in the composite material. FTIR study has indicated the successful coupling of cobalt oxide with MWCNTs. The chemically coupled cobalt oxide onto the surface of MWCNTs composite is found highly active towards oxygen evolution reaction (OER) with a low onset potential 1.44 V versus RHE, low overpotential 262 mV at 10 mAcm-2 and small Tafel slope 81 mV dec-1. For continuous operation of 40 hours during durability test, no decay in activity was recorded. Electrochemical impedance study further revealed a low charge transfer resistance of 70.64 Ohms for the composite material during the electrochemical reaction and which strongly favored OER kinetics. This work provides a simple, low cost, and smartly designing electrocatalysts via hydrothermal reaction for the catalysis and energy storage applications.

2.
RSC Adv ; 9(59): 34136-34143, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-35529970

ABSTRACT

The design of efficient nonprecious catalysts for the hydrogen evolution reaction (HER) or the oxygen evolution reaction (OER) is a necessary, but very challenging task to uplift the water-based economy. In this study, we developed a facile approach to produce porous carbon from the dehydration of sucrose and use it for the preparation of nanocomposites with cobalt oxide (Co3O4). The nanocomposites were studied by the powder X-ray diffraction and scanning electron microscopy techniques, and they exhibited the cubic phase of cobalt oxide and porous structure of carbon. The nanocomposites showed significant OER activity in alkaline media, and the current densities of 10 and 20 mA cm-2 could be obtained at 1.49 and 1.51 V versus reversible hydrogen electrode (RHE), respectively. The impedance study confirms favorable OER activity on the surface of the prepared nanocomposites. The nanocomposite is cost-effective and can be capitalized in various energy storage technologies.

3.
Materials (Basel) ; 11(8)2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30096763

ABSTRACT

It is always demanded to prepare a nanostructured material with prominent functional properties for the development of a new generation of devices. This study is focused on the synthesis of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth method with vitamin B12 as a soft template and growth directing agent. CuO nanostructures are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. CuO nanostructures are heart/dumbbell like in shape, exhibit high crystalline quality as demonstrated by XRD, and have no impurity as confirmed by XPS. Apparently, CuO material seems to be porous in structure, which can easily carry large amount of enzyme molecules, thus enhanced performance is shown for the determination of uric acid. The working linear range of the biosensor is 0.001 mM to 10 mM with a detection limit of 0.0005 mM and a sensitivity of 61.88 mV/decade. The presented uric acid biosensor is highly stable, repeatable, and reproducible. The analytical practicality of the proposed uric acid biosensor is also monitored. The fabrication methodology is inexpensive, simple, and scalable, which ensures the capitalization of the developed uric acid biosensor for commercialization. Also, CuO material can be used for various applications such as solar cells, lithium ion batteries, and supercapacitors.

4.
Sensors (Basel) ; 16(11)2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27854253

ABSTRACT

The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification.


Subject(s)
Copper/chemistry , Glucose/analysis , Nanostructures/chemistry , Biosensing Techniques/methods , Glucose/chemistry , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...