Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 34(11): 2331-2342, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34705462

ABSTRACT

In recent years, cannabis vaporizer cartridges have increased in popularity and availability, and there are concerns regarding exposure to heavy-metal compounds from their use. The physical components of the cartridge devices themselves have been implicated as a potential source of metal exposure, but it is not known if these metals migrate into the inhalable vapor. This study analyzes the components of vaporizer cartridges for 10 different metals and also collects aerosol mixtures from 13 randomly purchased commercially available cannabis cartridges from Washington State to compare their elemental profiles. Results indicate that chromium, copper, nickel, as well as smaller amounts of lead, manganese, and tin migrate into the cannabis oil and inhaled vapor phase, resulting in a possible acute intake of an amount of inhaled metals above the regulatory standard of multiple governmental bodies. Noncartridge heating methods of cannabis flower and concentrate were compared, and results indicate that the heating device itself is a source of metal contamination. As safety and compliance testing regulations evolve, it will be important to include more than the standard As, Cd, Hg, and Pb to the list of regulated metals.


Subject(s)
Aerosols/analysis , Cannabis/chemistry , Inhalation Exposure/analysis , Metals, Heavy/analysis , Nebulizers and Vaporizers
2.
ACS Omega ; 6(26): 17126-17135, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34250369

ABSTRACT

The rapid growth of inhalable cannabis concentrates raises questions about the safety of acute and chronic exposure to these aerosol mixtures. Due to the nonpolar nature of the aerosol mixture created from cannabis vapor cartridges, traditional aqueous-based capture methods used in e-cigarette or tobacco cigarette studies for analysis of metals are insufficient. Moreover, hydrophobic cannabis concentrates are not miscible with dilute aqueous acids and therefore not ideal for metal spiking unlike electronic nicotine delivery systems. This study describes a method of spiking nonaqueous matrices with aqueous metals standards to investigate aerosolization and recovery of the metals. It also compares various methods for nonpolar aerosol capture and subsequent analysis of 10 metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Sn) in two model cannabis matrices, flower and concentrate. Spiked cannabis concentrates were vaped in commercially available cartridges, and their aerosol mixtures were investigated for recovery of heavy metals via ICP-MS. Spiked flower samples were also combusted to compare collection rates of the 10 metals. Results show that not all metals that are present in the concentrate or flower can be fully recovered in the aerosol capture processes at standard voltage settings or combustion temperatures. These studies also demonstrate the importance of a nonpolar solvent as part of the aerosol collection to increase the recovery of some metals. The high concentration of some metals seen in the concentrate suggests that the devices themselves are potential routes of exposure. The ICP-MS analysis method was further validated by evaluating different parameters including linearity, matrix effect, limit of detection, limit of quantitation, and repeatability.

3.
Environ Sci Pollut Res Int ; 24(21): 17769-17778, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28602002

ABSTRACT

Monoethanolamine (shortly ethanolamine (ETA)), usually used as a corrosion inhibitor, is a contaminant of wastewater from the secondary cooling system of nuclear power plants (NPPs) and is not readily biodegradable. We conducted various experiments, including treatments with nano zero-valent iron (nZVI), nano-iron/calcium, and calcium oxide (nFe/Ca/CaO) with ozone (O3) or hydrogen peroxide (H2O2) to reduce the concentration of ETA and to decrease the chemical demand of oxygen (COD) of these wastewaters. During this study, wastewater with ETA concentration of 7465 mg L-1 and COD of 6920 mg L-1 was used. As a result, the ETA concentration was reduced to 5 mg L-1 (a decrease of almost 100%) and COD was reduced to 2260 mg L-1, a reduction of 67%, using doses of 26.8 mM of nZVI and 1.5 mM of H2O2 at pH 3 for 3 h. Further treatment for 48 h allowed a decrease of COD by almost 97%. Some mechanistic considerations are proposed in order to explain the degradation pathway. The developed hybrid nano zero-valent iron-initiated oxidation process with H2O2 is promising in the treatment of ETA-contaminated wastewaters.


Subject(s)
Nuclear Power Plants , Ozone , Water Purification , Ethanolamine , Ethanolamines , Hydrogen Peroxide , Iron , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical
4.
Waste Manag ; 60: 428-438, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28089400

ABSTRACT

The separation of plastics containing brominated flame retardants (BFR) like (acrylonitrile-butadiene-styrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) from automobile and electronic waste shredder residue (ASR/ESR) are a major concern for thermal recycling. In laboratory scale tests using a hybrid nano-Fe/Ca/CaO assisted ozonation treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing ABS wettability and thereby promoting its separation from ASR/ESR by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR and about 21.2°, 20.7°, and 20.0° in ESR respectively. SEM-EDS, FT-IR, and XPS analyses demonstrated a marked decrease in [Cl] and a significant increase in the number of hydrophilic groups, such as CO, CO, and (CO)O, on the PVC or ABS surface. Under froth flotation conditions at 50rpm, about 99.1% of combined fraction of ABS/HIPS in ASR samples and 99.6% of ABS/HIPS in ESR samples were separated as settled fraction. After separation, the purity of the recovered combined ABS/HIPS fraction was 96.5% and 97.6% in ASR and ESR samples respectively. Furthermore, at 150rpm a 100% PVC separation in the settled fraction, with 98% and 99% purity in ASR and ESR plastics, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. Further, this process improved the quality of recycled ASR/ESR plastics by removing surface contaminants or impurities.


Subject(s)
Automobiles , Electronic Waste , Ozone/chemistry , Recycling/methods , Acrylonitrile , Butadienes , Calcium/chemistry , Calcium Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Iron/chemistry , Nanotechnology/methods , Oxides/chemistry , Polystyrenes , Polyvinyl Chloride , Refuse Disposal/methods , Spectroscopy, Fourier Transform Infrared , Waste Products/analysis
5.
J Hazard Mater ; 321: 193-202, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27619965

ABSTRACT

Polyvinyl chloride (PVC) containing chlorine can release highly toxic materials and persistent organic pollutants if improperly disposed of. The combined technique of powder activated carbon (PAC) coating and mild heat treatment has been found to selectively change the surface hydrophobicity of PVC, enhancing its wettability and thereby promoting its separation from heavy plastic mixtures included polycarbonate (PC), polymethyl methacrylate (PMMA), polystyrene (PS) and acrylonitrile butadiene styrene (ABS) by means of froth flotation. The combined treatments helped to rearrange the surface components and make PVC more hydrophobic, while the remaining plastics became more hydrophilic. After the treatments at 150°C for 80s the contact angle of the PVC was greatly increased from 90.5 to 97.9°. The SEM and AFM reveal that the surface morphology and roughness changes on the PVC surface. XPS and FT-IR results further confirmed an increase of hydrophobic functional groups on the PVC surface. At the optimized froth flotation and subsequent mixing at 150rpm, 100% of PVC was recovered from the remaining plastic mixture with 93.8% purity. The combined technique can provide a simple and effective method for the selective separation of PVC from heavy plastics mixtures to facilitate easy industrial recycling.

6.
J Air Waste Manag Assoc ; 67(4): 475-487, 2017 04.
Article in English | MEDLINE | ID: mdl-27802127

ABSTRACT

A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H2O2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L-1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L-1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L-1 of nano-Fe/Ca/CaO and 20 mM H2O2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H2O2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples. IMPLICATIONS: Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H2O2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91-99% of heavy metals removal. The coupled coagulation-oxidation process by nFe/Ca/CaO reveals excellent ability to treat leachate. After coupled treatment the color, COD, and TSS were also much lower than the discharge regulation limit.


Subject(s)
Calcium/chemistry , Iron/chemistry , Waste Management/methods , Water Pollution, Chemical/prevention & control , Biological Oxygen Demand Analysis , Calcium Compounds/chemistry , Hydrogen Peroxide/chemistry , Metals, Heavy/analysis , Oxidation-Reduction , Oxides/chemistry , Solid Waste , Water Pollutants, Chemical/chemistry
7.
Environ Sci Pollut Res Int ; 24(5): 4469-4479, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27943143

ABSTRACT

One method of weakening the inherently hydrophobic surface of plastics relevant to flotation separation is heterogeneous nano-Fe/Ca/CaO catalytic ozonation. Nano-Fe/Ca/CaO-catalyzed ozonation for 15 min efficiently decreases the surface hydrophobicity of brominated and chlorinated flame retardant (B/CFR)-containing plastics (such as acrylonitrile-butadienestyrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) in automobile shredder residue (ASR) to such an extent that their flotation ability is entirely depressed. Such a hydrophilization treatment also stimulates the ABS, HIPS, and PVC surface roughness, wetting of the surface, and the thermodynamic equilibrium conditions at the surface and ultimately changes surface polarity. SEM-EDS, AFM, and XPS analyses of the PVC and ABS surfaces demonstrated a marked decrease in [Cl/Br] and a significant increase in the number of hydrophilic groups, such as C-O, C=O, and (C=O)-O. Under froth flotation conditions at 50 rpm, about 99.5 % of ABS and 99.5 % of HIPS in ASR samples settled out, resulting in a purity of 98 and 98.5 % for ABS and HIPS in ASR samples, respectively. Furthermore, at 150 rpm, we also obtained 100 % PVC separation in the settled fraction, with 98 % purity in ASR. Total recovery of non-B/CFR-containing plastics reached nearly 100 % in the floating fraction. The amount of nano-Fe/Ca/CaO reagent employed during ozonation is very small, and additional removal of surface contaminants from the recycled ASR plastic surfaces by ozonation makes the developed process simpler, greener, and more effective.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Flame Retardants/analysis , Iron/chemistry , Nanostructures/chemistry , Oxides/chemistry , Ozone/chemistry , Plastics/chemistry , Automobiles , Catalysis , Halogenation , Hydrophobic and Hydrophilic Interactions , Surface Properties
8.
Environ Sci Pollut Res Int ; 23(22): 22783-22792, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27562813

ABSTRACT

Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90-100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45-1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L-1; Cr 1.5 mg L-1; Fe, Pb, and Zn 3.0 mg L-1; Mn and Ni 1 mg L-1) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.


Subject(s)
Calcium/chemistry , Hazardous Waste/analysis , Hydrocarbons, Halogenated/chemistry , Metals, Heavy/chemistry , Waste Management/methods , Automobiles , Calcium Compounds/chemistry , Indicators and Reagents , Oxides/chemistry , Spectrometry, X-Ray Emission
9.
Waste Manag ; 49: 181-187, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26777552

ABSTRACT

The present paper reports the novel synthesis and application of Thiomer solidification for heavy metal immobilization in hazardous automobile shredder residues and industrial solid waste (ASR/ISW) thermal residues. The word Thiomer is a combination of the prefix of a sulfur-containing compound "Thio" and the suffix of "Polymer" meaning a large molecule compound of many repeated subunits. To immobilize heavy metals, either ASR/ISW thermal residues (including bottom and fly ash) was mixed well with Thiomer and heated at 140°C. After Thiomer solidification, approximately 91-100% heavy metal immobilization was achieved. The morphology and mineral phases of the Thiomer-solidified ASR/ISW thermal residue were characterized by field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD), which indicated that the amounts of heavy metals detectable on the ASR/ISW thermal residue surface decreased and the sulfur mass percent increased. XRD indicated that the main fraction of the enclosed/bound materials on the ASR/ISW residue contained sulfur associated crystalline complexes. The Thiomer solidified process could convert the heavy metal compounds into highly insoluble metal sulfides and simultaneously encapsulate the ASR/ISW thermal residue. These results show that the proposed method can be applied to the immobilization of ASR/ISW hazardous ash involving heavy metals.


Subject(s)
Industrial Waste , Metals, Heavy/chemistry , Solid Waste , Hazardous Waste , Metals, Heavy/analysis , Recycling , Waste Management/methods
10.
J Hazard Mater ; 306: 13-23, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26685121

ABSTRACT

Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

11.
J Air Waste Manag Assoc ; 65(10): 1247-55, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26230452

ABSTRACT

UNLABELLED: This study was conducted to examine the synthesis and application of novel nano-size calcium/iron-based composite material as an immobilizing and separation treatment of the heavy metals in fly ash from municipal solid waste incineration. After grinding with nano-Fe/Ca/CaO and with nano-Fe/Ca/CaO/[PO4], approximately 30 wt% and 25 wt% of magnetic fraction fly ash were separated. The highest amount of entrapped heavy metals was found in the lowest weight of the magnetically separated fly ash fraction (i.e., 91% in 25% of treated fly ash). Heavy metals in the magnetic or nonmagnetic fly ash fractions were about 98% and 100% immobilized, respectively. Additionally, scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDS) observations indicate that the main fraction of enclosed/bound materials on treated fly ash includes Ca/PO4-associated crystalline complexes. After nano-Fe/Ca/CaO/[PO4] treatment, the heavy metal concentrations in the fly ash leachate were much lower than the Japan standard regulatory limit for hazardous waste landfills. These results appear to be extremely promising. The addition of a nano-Fe/Ca/CaO/PO4mixture with simple grinding technique is potentially applicable for the remediation and volume reduction of fly ash contaminated by heavy metals. IMPLICATIONS: After grinding with nano-Fe/Ca/CaO and nano-Fe/Ca/CaO/[PO4], approximately 30 wt% and 25 wt% of magnetic fraction fly ash were separated. The highest amount of entrapped heavy metals was found in the lowest weight of the magnetically separated fly ash fraction (i.e., 91% in 25% of treated fly ash), whereas heavy metals either in the magnetic or nonmagnetic fly ash fractions were about 98% and 100% immobilized. These results appear to be very promising, and the addition of nano-Fe/Ca/CaO/PO4mixture with simple grinding technique may be considered potentially applicable for the remediation and volume reduction of contaminated fly ash by heavy metals.


Subject(s)
Coal Ash/analysis , Incineration , Metal Nanoparticles/chemistry , Metals, Heavy/analysis , Calcium/chemistry , Indicators and Reagents/chemistry , Iron/chemistry , Microscopy, Electron, Scanning , Solid Waste/analysis , Spectrometry, X-Ray Emission
12.
J Hazard Mater ; 297: 74-82, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-25942697

ABSTRACT

This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO4], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant (133)Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO4], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped (134)Cs and (137)Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that (134)Cs and (137)Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO4] treated soil were characterized using SEM-EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil included Ca/PO4 associated crystalline complexes. These results suggest that simple grinding treatment with nano-Fe/Ca/CaO/[PO4] under dry conditions might be an extremely efficient separation and immobilization method for radioactive cesium contaminated soil.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Cesium/isolation & purification , Iron/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Phosphates/chemistry , Soil Pollutants, Radioactive/isolation & purification , Adsorption , Cesium Radioisotopes/isolation & purification , Microscopy, Electron, Scanning , Models, Theoretical , Solubility , Surface Properties
13.
J Hazard Mater ; 296: 239-247, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25935297

ABSTRACT

This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO4- associated crystalline complexes, and that immobile Ca/PO4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO4 as a simple, suitable and highly efficient material for the gentle immobilization of heavy metals in hazardous ASR thermal residue in dry condition.


Subject(s)
Automobiles , Calcium Compounds/chemistry , Hazardous Substances/analysis , Incineration , Metals, Heavy/analysis , Nanostructures/chemistry , Coal Ash/chemistry , Dust , Republic of Korea
14.
J Environ Radioact ; 139: 118-124, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25464047

ABSTRACT

Although direct radiation induced health impacts were considered benign, soil contamination with (137)Cs, due to its long-term radiological impact (30 years half-life) and its high biological availability is of a major concern in Japan in the aftermath of the Fukushima nuclear power plant disaster. Therefore (137)Cs reduction and immobilization in contaminated soil are recognized as important problems to be solved using suitable and effective technologies. One such thermal treatment/vitrification with nanometallic Ca/CaO amendments is a promising treatment for the ultimate immobilization of simulated radionuclide (133)Cs in soil, showing low leachability and zero evaporation. Immobilization efficiencies were 88%, 95% and 96% when the (133)Cs soil was treated at 1200 °C with activated carbon, fly ash and nanometallic Ca/CaO additives. In addition, the combination of nanometallic Ca/CaO and fly ash (1:1) enhanced the immobilization efficiency to 99%, while no evaporation of (133)Cs was observed. At lower temperatures (800 °C) the leachable fraction of Cs was only 6% (94% immobilization). Through the SEM-EDS analysis, decrease in the amount of Cs mass percent detectable on soil particle surface was observed after soil vitrified with nCa/CaO + FA. The (133)Cs soil was subjected to vitrified with nCa/CaO + FA peaks related to Ca, crystalline phases (CaCO3/Ca(OH)2), wollastonite, pollucite and hematite appeared in addition to quartz, kaolinite and bentonite, which probably indicates that the main fraction of enclosed/bound materials includes Ca-associated complexes. Thus, the thermal treatment with the addition of nanometallic Ca/CaO and fly ash may be considered potentially applicable for the remediation of radioactive Cs contaminated soil at zero evaporation, relatively at low temperature.


Subject(s)
Calcium Compounds/chemistry , Cesium Radioisotopes/chemistry , Fukushima Nuclear Accident , Oxides/chemistry
15.
J Hazard Mater ; 279: 52-9, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-25038573

ABSTRACT

In this work, the capability of nanometallic Ca/CaO methanol suspension in removing and/or immobilizing stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs) in contaminated fly ash was investigated. After a first methanol and second water washing yielded only 45% of (133)Cs removal. While, after a first methanol washing, the second solvent with nanometallic Ca/CaO methanol suspension yielded simultaneous enhanced removal and immobilization about 99% of (133)Cs. SEM-EDS analysis revealed that the mass percent of detectable (133)Cs on the fly ash surface recorded a 100% decrease. When real radioactive cesium contaminated fly ash (containing an initial 14,040Bqkg(-1)(134)Cs and (137)Cs cumulated concentration) obtained from burning wastes from Fukushima were reduced to 3583Bqkg(-1) after treatment with nanometallic Ca/CaO methanol suspension. Elution test conducted on the treated fly ash gave 100BqL(-1) total (134)Cs and (137)Cs concentrations in eluted solution. Furthermore, both ash content and eluted solution concentrations of (134)Cs and (137)Cs were much lower than the Japanese Ministry of the Environment regulatory limit of 8000Bqkg(-1) and 150BqL(-1) respectively. The results of this study suggest that the nanometallic Ca/CaO methanol suspension is a highly potential amendment for the remediation of radioactive cesium-contaminated fly ash.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Cesium Radioisotopes/chemistry , Cesium/chemistry , Coal Ash/analysis , Methanol/chemistry , Oxides/chemistry , Cesium/isolation & purification , Cesium Isotopes/chemistry , Cesium Isotopes/isolation & purification , Cesium Radioisotopes/isolation & purification , Incineration , Microscopy, Electron, Scanning , Refuse Disposal , Suspensions
16.
Environ Sci Pollut Res Int ; 21(15): 9270-7, 2014.
Article in English | MEDLINE | ID: mdl-24723351

ABSTRACT

In the present work, we investigated the use of nano-metallic calcium (Ca) and calcium oxide (CaO) dispersion mixture for the simultaneous remediation of contaminated soils with both heavy metals (As, Cd, Cr, and Pb) and polychlorinated biphenyls (PCBs). Regardless of soil moisture content, nano-metallic Ca/CaO dispersion mixture achieved about 95-99% of heavy metal immobilization by a simple grinding process. During the same treatment, reasonable PCB hydrodechlorination efficiencies were obtained (up to 97%), though higher hydrodechlorination efficiency by preliminary drying of soil was observed.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Metals, Heavy/chemistry , Oxides/chemistry , Polychlorinated Biphenyls/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Decontamination , Environmental Pollution
17.
Arch Environ Contam Toxicol ; 64(2): 180-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23192587

ABSTRACT

This study describes the decomposition of polychlorinated biphenyls (PCBs) in soil with dispersion mixtures of metallic calcium (Ca) and calcium oxide (CaO) at different temperatures. In these experiments, naturally moisturized and contaminated soil (1.0 g [31 ppm PCBs]), CaO (dried 2.0 wt%), and metallic Ca (0.01 g [0.25 mmol]) were introduced into a stainless steel pressure reactor under 0.1 MPa N(2) gas. The mixtures were stirred magnetically and heated at 260, 280, and 300 °C, respectively. Soil treatment with metallic Ca and CaO under various temperature conditions is extremely effective for degrading existing PCBs. Decomposition resulted from dechlorination (DC). Initial moisture in soil acted as a hydrogen source during stirring. Soil moisture can be beneficial for hydrodechlorination in the presence of metallic Ca and CaO. Furthermore, metallic Ca and CaO can greatly increase the number of collisions and mutual refinement. Treatment at 260, 280, and 300 °C combined with metallic Ca and CaO is effective for the decomposition (approximately 95 % DC) of PCBs in soil under natural moisture conditions.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Environmental Restoration and Remediation/methods , Oxides/chemistry , Polychlorinated Biphenyls/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis
18.
Chemosphere ; 89(6): 717-23, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22818089

ABSTRACT

This study investigated the use of a nanometallic Ca and CaO dispersion mixture for the immobilization of heavy metals (As, Cd, Cr and Pb) in contaminated soil. Simple grinding achieved 85-90% heavy metal immobilization, but it can be enhanced further to 98-100% by addition of a nanometallic Ca/CaO dispersion mixture produced by grinding. Observations using SEM-EDS elemental maps and semi-quantitative analysis showed that the amounts of As, Cd, Cr, and Pb measurable on the soil particle surface decrease after nanometallic Ca/CaO treatment. The leachable heavy metal concentrations were reduced after nanometallic Ca/CaO treatment to concentrations lower than the Japan soil elution standard regulatory threshold: <0.01 mg L(-1) for As, Cd, and Pb; and 0.05 mg L(-1) for Cr. Effects of soil moisture and pH on heavy metal immobilization were not strongly influenced. The most probable mechanisms for the enhancement of heavy metal immobilization capacity with nanometallic Ca/CaO treatment might be due to adsorption and entrapment of heavy metals into newly formed aggregates, thereby prompting aggregation of soil particles and enclosure/binding with Ca/CaO-associated immobile salts. Results suggest that the nanometallic Ca/CaO mixture is suitable for use in immobilization of heavy-metal-contaminated soil under normal moisture conditions.


Subject(s)
Calcium Compounds/chemistry , Calcium/chemistry , Metal Nanoparticles/chemistry , Metals, Heavy/chemistry , Oxides/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Hydrogen-Ion Concentration , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...