Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet ; 396(10254): 839-852, 2020 09 19.
Article in English | MEDLINE | ID: mdl-32888407

ABSTRACT

BACKGROUND: Lisocabtagene maraleucel (liso-cel) is an autologous, CD19-directed, chimeric antigen receptor (CAR) T-cell product. We aimed to assess the activity and safety of liso-cel in patients with relapsed or refractory large B-cell lymphomas. METHODS: We did a seamless design study at 14 cancer centres in the USA. We enrolled adult patients (aged ≥18 years) with relapsed or refractory large B-cell lymphomas. Eligible histological subgroups included diffuse large B-cell lymphoma, high-grade B-cell lymphoma with rearrangements of MYC and either BCL2, BCL6, or both (double-hit or triple-hit lymphoma), diffuse large B-cell lymphoma transformed from any indolent lymphoma, primary mediastinal B-cell lymphoma, and follicular lymphoma grade 3B. Patients were assigned to one of three target dose levels of liso-cel as they were sequentially tested in the trial (50 × 106 CAR+ T cells [one or two doses], 100 × 106 CAR+ T cells, and 150 × 106 CAR+ T cells), which were administered as a sequential infusion of two components (CD8+ and CD4+ CAR+ T cells) at equal target doses. Primary endpoints were adverse events, dose-limiting toxicities, and the objective response rate (assessed per Lugano criteria); endpoints were assessed by an independent review committee in the efficacy-evaluable set (comprising all patients who had confirmed PET-positive disease and received at least one dose of liso-cel). This trial is registered with ClinicalTrials.gov, NCT02631044. FINDINGS: Between Jan 11, 2016, and July 5, 2019, 344 patients underwent leukapheresis for manufacture of CAR+ T cells (liso-cel), of whom 269 patients received at least one dose of liso-cel. Patients had received a median of three (range 1-8) previous lines of systemic treatment, with 260 (97%) patients having had at least two lines. 112 (42%) patients were aged 65 years or older, 181 (67%) had chemotherapy-refractory disease, and seven (3%) had secondary CNS involvement. Median follow-up for overall survival for all 344 patients who had leukapheresis was 18·8 months (95% CI 15·0-19·3). Overall safety and activity of liso-cel did not differ by dose level. The recommended target dose was 100 × 106 CAR+ T cells (50 × 106 CD8+ and 50 × 106 CD4+ CAR+ T cells). Of 256 patients included in the efficacy-evaluable set, an objective response was achieved by 186 (73%, 95% CI 66·8-78·0) patients and a complete response by 136 (53%, 46·8-59·4). The most common grade 3 or worse adverse events were neutropenia in 161 (60%) patients, anaemia in 101 (37%), and thrombocytopenia in 72 (27%). Cytokine release syndrome and neurological events occurred in 113 (42%) and 80 (30%) patients, respectively; grade 3 or worse cytokine release syndrome and neurological events occurred in six (2%) and 27 (10%) patients, respectively. Nine (6%) patients had a dose-limiting toxicity, including one patient who died from diffuse alveolar damage following a dose of 50 × 106 CAR+ T cells. INTERPRETATION: Use of liso-cel resulted in a high objective response rate, with a low incidence of grade 3 or worse cytokine release syndrome and neurological events in patients with relapsed or refractory large B-cell lymphomas, including those with diverse histological subtypes and high-risk features. Liso-cel is under further evaluation at first relapse in large B-cell lymphomas and as a treatment for other relapsed or refractory B-cell malignancies. FUNDING: Juno Therapeutics, a Bristol-Myers Squibb Company.


Subject(s)
Antigens, CD19/therapeutic use , Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , Aged , Aged, 80 and over , Anemia/epidemiology , Antigens, CD19/administration & dosage , Antigens, CD19/adverse effects , Biological Products , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cytokine Release Syndrome/epidemiology , Female , Humans , Immunotherapy, Adoptive/adverse effects , Infusions, Intravenous , Leukapheresis/methods , Lymphoma, Large B-Cell, Diffuse/classification , Lymphoma, Large B-Cell, Diffuse/immunology , Male , Nervous System Diseases/epidemiology , Neutropenia/epidemiology , Recurrence , Safety , Survival Analysis , Thrombocytopenia/epidemiology , Treatment Outcome
2.
Biotechnol Prog ; 30(3): 562-70, 2014.
Article in English | MEDLINE | ID: mdl-24777986

ABSTRACT

During a small-scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small-scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Bioreactors , Cell Culture Techniques , Animals , Antibodies, Monoclonal/radiation effects , CHO Cells/radiation effects , Cricetulus , Culture Media/radiation effects , Light , Mammals
3.
Mol Pharm ; 11(4): 1259-72, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24588659

ABSTRACT

Oxidative damage to proteins is one of the most prominent chemical degradation pathways that are of concern for drug product development in the biotechnology industry. Especially susceptible to oxidation are the Met and Trp residues in proteins. While L-Met and L-Trp have been shown to act as antioxidants typically protecting proteins against Met and Trp oxidation, respectively, l-Trp has been shown to be particularly sensitive to light, thereby producing various reactive oxygen species (ROS), including H2O2. There is hence a need to identify nonphotosensitive molecules that can protect Trp oxidation in proteins so that they can be easily handled under drug product manufacturing conditions. A combination of screening methods, namely, cyclic voltammetry (CV) and hydrogen peroxide generation upon photoirradiation, was used to screen several molecules to identify compounds that can act as antioxidants. Specifically, indole and tryptophan with hydroxy groups on the six-membered aromatic ring were found to have lower oxidation potentials than the parent compounds and produced the least amount of H2O2 upon light exposure. These derivatives were also found to sufficiently protect tryptophan oxidation in mAb1 against a variety of reactive oxygen species such as alkyl peroxides, hydroxyl radicals, and singlet oxygen and may be useful as part of the formulation toolkit to protect against protein degradation via oxidation.


Subject(s)
Antioxidants/pharmacology , Drug Evaluation, Preclinical/methods , Indoles/pharmacology , Reactive Oxygen Species/metabolism , Tryptophan/metabolism , Oxidation-Reduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...