Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-13, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038384

ABSTRACT

Cancer is a major global health concern, and the constant search for novel, selective anticancer compounds with low toxicity is never ending. Nitrogen heterocyclic compounds such as pyrimidine and triazole have been identified as potential candidates for cancer treatment. A novel series of 1,2,3-triazole incorporated thiazole-pyrimidine-isoxazole derivatives 10 (a-j) were designed, synthesized and evaluated for antitumorigenic activities against human breast cancer (MCF-7), human lung cancer (A549) and human prostate (PC3 & DU-145) various cell-lines by employing MTT assay using etoposide as the positive control. The synthesized hybrids yielded decent efficacy, which was further compared with the standard drug. Among all the molecules, 10h revealed the more potent anticancerous activities, having IC50 values ranging from 0.011 ± 0.0017 µM; 0.063 ± 0.0012 µM; 0.017 ± 0.0094 µM and 0.66 ± 0.072 µM with DU145, PC3, A549, and MCF7 cell-lines, respectively. Tubulin, being a major protein involved with diverse biological actions, also serves, as a crucial target for several clinically practiced anticancer drugs, was utilized for docking analyses to evaluate the binding affinity of ligands. Docking results demonstrates that the selected hybrids 10 (g-j) exhibited good binding affinities with protein. Subsequently, drug likeness studies were carried out on the synthesized compounds to evaluate and analyze their drug like properties such as absorption, distribution, metabolism, excretion, and toxicity (ADMET) for toxicity prediction. Based on these analyses, the selected complexes were further employed for molecular dynamic simulations to analyze stability via an exhaustive cumulative 200 nanoseconds simulation. These results suggest that the selected compounds are stable and might serve as potential inhibitors to tubulin complex. In conclusion, we propose these synthesized compounds 10 (g-j) might provide new insights into cancer treatment and have potential for future development.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 37(14): 3751-3763, 2019 09.
Article in English | MEDLINE | ID: mdl-30239262

ABSTRACT

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M.tb) or tubercule bacillus, and H37Rv is the most studied clinical strain. The recent development of resistance to existing drugs is a global health-care challenge to control and cure TB. Hence, there is a critical need to discover new drug targets in M.tb. The members of peptidoglycan biosynthesis pathway are attractive target proteins for antibacterial drug development. We have performed in silico analysis of M.tb MraY (Rv2156c) integral membrane protein and constructed the three-dimensional (3D) structure model of M.tb MraY based on homology modeling method. The validated model was complexed with antibiotic muraymycin D2 (MD2) and was used to generate structure-based pharmacophore model (e-pharmacophore). High-throughput virtual screening (HTVS) of Asinex database and molecular docking of hits was performed to identify the potential inhibitors based on their mode of interactions with the key residues involved in M.tb MraY-MD2 binding. The validation of these molecules was performed using molecular dynamics (MD) simulations for two best identified hit molecules complexed with M.tb MraY in the lipid bilayer, dipalmitoylphosphatidyl-choline (DPPC) membrane. The results indicated the stability of the complexes formed and retained non-bonding interactions similar to MD2. These findings may help in the design of new inhibitors to M.tb MraY involved in peptidoglycan biosynthesis.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Amino Acid Sequence , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Binding Sites , Drug Evaluation, Preclinical , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Reproducibility of Results , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...