Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(5): e63805, 2013.
Article in English | MEDLINE | ID: mdl-23724004

ABSTRACT

Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5) M(-1), -7.175 Kcal M(-1) for coumarin derivative (CD) enamide; 0.837±0.01×10(5) M(-1), -6.685 Kcal M(-1) for coumarin derivative (CD) enoate, and 0.606±0.01×10(5) M(-1), -6.49 Kcal M(-1) for coumarin derivative methylprop (CDM) enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.


Subject(s)
Hymecromone/metabolism , Serum Albumin/metabolism , Binding Sites , Buffers , Circular Dichroism , Humans , Hydrogen-Ion Concentration , Hymecromone/chemistry , Kinetics , Molecular Docking Simulation , Protein Binding , Protein Structure, Secondary , Serum Albumin/chemistry , Spectrometry, Fluorescence , Thermodynamics , Time Factors
2.
PLoS One ; 7(4): e35084, 2012.
Article in English | MEDLINE | ID: mdl-22514709

ABSTRACT

BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Iron Deficiencies , Iron/metabolism , Photosystem I Protein Complex/metabolism , Plant Proteins/metabolism , Photosynthesis/physiology
3.
J Mol Model ; 18(6): 2589-97, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22076062

ABSTRACT

Betulinic acid (BA) is a naturally occurring pentacyclictriterpenoid possessing anti-retroviral, anti-cancer, and anti-inflammatory properties. Here, we studied the interaction of BA with human serum albumin (HSA) by using molecular docking, and molecular dynamic simulation methods. Molecular docking studies revealed that BA can bind in the large hydrophobic cavity of drug binding site I of sub-domain IIA and IIB, mainly by the hydrophobic interactions and also by hydrogen bond interactions. In which several cyclohexyl groups of BA are interacting with Phe(206), Arg(209), Ala(210), Ala(213), Leu(327), Gly(328), Leu(331), Ala(350), and Lys(351), residues of sub-domain IIA and IIB of HSA by hydrophobic interactions. Also, hydrogen bond interactions were observed between the hydroxyl (OH) group of BA with Phe(206) and Glu(354) of HSA, with hydrogen bond distances of 0.24 nm,0.28 nm respectively. Further, specifically, the molecular dynamics study makes an important contribution in understanding the effect of the binding of BA on conformational changes of HSA and the stability of the protein-drug complex system in aqueous solution. The root mean square deviation values of atoms in the free HSA molecule were calculated from 3000 ps to 5000 ps trajectory and the results were obtained as 0.72 ± 0.036 nm and 0.81 ± 0.032 nm for free HSA and HSA-BA, respectively. The radius of gyration (Rg) values of both unliganded HSA and HSA-BA were stabilized at 2.59 ± 0.03 nm, 2.51 ± 0.01 nm, respectively. Thus, this work may play an important role in the design of new BA inspired drugs with desired HSA binding affinity.


Subject(s)
Molecular Dynamics Simulation , Serum Albumin/chemistry , Triterpenes/chemistry , Amino Acid Motifs , Binding Sites , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Pentacyclic Triterpenes , Protein Binding , Protein Structure, Tertiary , Solvents/chemistry , Surface Properties , Water/chemistry , Betulinic Acid
4.
Mol Biosyst ; 7(11): 3143-51, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21915394

ABSTRACT

The physiological function of Photosystem I (PSI) is a sunlight energy converter, catalyzing one of the initial steps in driving oxygenic photosynthesis in cyanobacteria, algae and higher plants. The Chlamydomonas reinhardtii PSI structure was not known since it contains a unique structure having additional light harvesting complex I (LHCI) subunits, which play a major role in the transfer of sunlight energy to the reaction center. Here, individual subunits of LHC and core subunits are built based on the PDB taken from RCSB Protein Data Bank. The model gives information about the geometrical existence of subunits following a flanking order of Lhca5, Lhca1, Lhca6, Lhca4, Lhca2, Lhca8, Lhca9, Lhca7, and Lhca3. The new subunit PsaO is located close to the PsaH, PsaI and PsaL subunits, thus it may be involved in the state transition mechanism and stabilization of PSI-LHCI supercomplexes. The modeled PSI-LHCI structure of C. reinhardtii shows a unique arrangement of PsaN, PsaO of PSI core subunits and Lhca5 to Lhca9 of LHCI subunits. There are many non-covalent interactions among the PSI and LHCI subunits, which suggest that C. reinhardtii PSI-LHCI supercomplexes are more complex than higher plants. These results strongly support the experimental data that, even with harsh treatment of the PSI-LHCI supercomplexes with detergent, the complexes do not dissociate due to strong interactions between the PSI core and LHCI. Thus, our 3D model may give valid structural information of the PSI-LHCI arrangement and its physiological role in C. reinhardtii.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Light-Harvesting Protein Complexes/chemistry , Models, Molecular , Photosystem I Protein Complex/chemistry , Databases, Protein , Light-Harvesting Protein Complexes/metabolism , Photosystem I Protein Complex/metabolism , Protein Conformation , Protein Interaction Maps , Protein Subunits/chemistry , Protein Subunits/metabolism , Static Electricity
5.
Bioinformation ; 7(2): 59-63, 2011.
Article in English | MEDLINE | ID: mdl-21938206

ABSTRACT

Human serum paraoxonase1 (HuPON1) belongs to the family of A-esterases (EC.3.1.8.1). It is associated with HDL particle and prevents atherosclerosis by cleaving lipid hydroperoxides and other proatherogenic molecules of oxidized low density lipoproteins (LDL). Since the precise structure of HuPON1 is not yet available, the structure-function relationship between HuPON1 and activators/inhibitors is still unknown. Therefore, a theoretical model of HuPON1 was generated using homology modelling and precise molecular interactions of an activator aspirin and an inhibitor cefazolin with PON1 were studied using Autodock software. The ligand binding residues were found to be similar to the predicted active site residues. Both cefazolin and aspirin were found to dock in the vicinity of the predicted active sites of PON1; cefazolin bound at residues N166, S193 and Y71, while aspirin at residues N309, I310 and L311. Binding region in the PON1 by prediction (3D2GO server) and docking studies provide useful insight into mechanism of substrate and inhibitor binding to the enzyme active site.

SELECTION OF CITATIONS
SEARCH DETAIL
...