Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1130891, 2023.
Article in English | MEDLINE | ID: mdl-37089562

ABSTRACT

Introduction: In north-western France, Salmonella enterica susp. enterica serovar Mbandaka (S. Mbandaka) is most frequently isolated from bovine and dairy samples. While this serovar most often results in asymptomatic carriage, for a number of years it has caused episodes of abortions, which have serious economic consequences for the sector. Interestingly, this serovar is also isolated from Gallus gallus in the same geographic zone. Despite its prevalence in bovines in north-western France, S. Mbandaka has not been broadly studied at the genomic level, and its prevalence and host adaptation are still not fully understood. Methods: In this study, we analyzed the genomic diversity of 304 strains of S. Mbandaka isolated from the bovine and poultry sectors in this area over a period of 5 years. A phylogenetic analysis was carried out and two approaches were followed to identify conserved genes and mutations related to host associations. The first approach targeted the genes compiled in the MEGARESv2, Resfinder, VFDB and SPI databases. Plasmid and phage contents were also investigated. The second approach refers to an in-house algorithm developed for this study that computes sensitivity, specificity, and accuracy of accessory genes and core variants according to predefined genomes groups. Results and discussion: All the analyzed strains belong to the multi-locus sequence type profile ST413, and the phylogenomic analysis revealed main clustering by host (bovine and poultry), emphasizing the circulation of 12 different major clones, of which seven circulate in poultry and five in the bovine sector in France and a likely food production chain adaptation of these clones. All strains present resistance determinants including heavy metals and biocides that could explain the ability of this serovar to survive and persist in the environment, within herds, and in food processing plants. To explore the wild animal contribution to the spread of this serovar in north-western France, we retrieved S. Mbandaka genomes isolated from wild birds from EnteroBase and included them in the phylogenomic analysis together with our collection. Lastly, screening of accessory genes and major variants allowed us to identify conserved specific mutations characteristic of each major cluster. These mutations could be used to design useful probes for food safety surveillance.

2.
NAR Genom Bioinform ; 4(3): lqac047, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35821882

ABSTRACT

From a historically rare serotype, Salmonella enterica subsp. enterica Dublin slowly became one of the most prevalent Salmonella in cattle and raw milk cheese in some regions of France. We present a retrospective genomic analysis of 480 S. Dublin isolates to address the context, evolutionary dynamics, local diversity and the genesis processes of regional S. Dublin outbreaks events between 2015 and 2017. Samples were clustered and assessed for correlation against metadata including isolation date, isolation matrices, geographical origin and epidemiological hypotheses. Significant findings can be drawn from this work. We found that the geographical distance was a major factor explaining genetic groups in the early stages of the cheese production processes (animals, farms) while down-the-line transformation steps were more likely to host genomic diversity. This supports the hypothesis of a generalised local persistence of strains from animal to finished products, with occasional migration. We also observed that the bacterial surveillance is representative of diversity, while targeted investigations without genomics evidence often included unrelated isolates. Combining both approaches in phylogeography methods allows a better representation of the dynamics, of outbreaks.

3.
Sci Data ; 9(1): 190, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484273

ABSTRACT

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Subject(s)
Foodborne Diseases , Listeria monocytogenes , Listeriosis , Animals , Ecosystem , Foodborne Diseases/microbiology , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Listeriosis/microbiology
4.
PLoS Pathog ; 18(4): e1010425, 2022 04.
Article in English | MEDLINE | ID: mdl-35381053

ABSTRACT

Although Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA) belong to the same phylogenetic species, share large portions of their genome and express many common virulence factors, they differ vastly in their host specificity, the immune response they elicit, and the clinical manifestations they cause. In this work, we compared their intracellular transcriptomic architecture and cellular phenotypes during human epithelial cell infection. While transcription induction of many metal transport systems, purines, biotin, PhoPQ and SPI-2 regulons was similar in both intracellular SPA and STM, we identified 234 differentially expressed genes that showed distinct expression patterns in intracellular SPA vs. STM. Surprisingly, clear expression differences were found in SPI-1, motility and chemotaxis, and carbon (mainly citrate, galactonate and ethanolamine) utilization pathways, indicating that these pathways are regulated differently during their intracellular phase. Concurring, on the cellular level, we show that while the majority of STM are non-motile and reside within Salmonella-Containing Vacuoles (SCV), a significant proportion of intracellular SPA cells are motile and compartmentalized in the cytosol. Moreover, we found that the elevated expression of SPI-1 and motility genes by intracellular SPA results in increased invasiveness of SPA, following exit from host cells. These findings demonstrate unexpected flagellum-dependent intracellular motility of a typhoidal Salmonella serovar and intriguing differences in intracellular localization between typhoidal and non-typhoidal salmonellae. We propose that these differences facilitate new cycles of host cell infection by SPA and may contribute to the ability of SPA to disseminate beyond the intestinal lamina propria of the human host during enteric fever.


Subject(s)
Chemotaxis , Salmonella paratyphi A , Bacterial Proteins/metabolism , Carbon/metabolism , Flagella/genetics , Flagella/metabolism , Intercellular Signaling Peptides and Proteins , Phylogeny , Salmonella paratyphi A/metabolism , Salmonella typhimurium
5.
PLoS One ; 16(2): e0246885, 2021.
Article in English | MEDLINE | ID: mdl-33607651

ABSTRACT

Bacillus thuringiensis (Bt) belongs to the Bacillus cereus (Bc) group, well known as an etiological agent of foodborne outbreaks (FBOs). Bt distinguishes itself from other Bc by its ability to synthesize insecticidal crystals. However, the search for these crystals is not routinely performed in food safety or clinical investigation, and the actual involvement of Bt in the occurrence of FBOs is not known. In the present study, we reveal that Bt was detected in the context of 49 FBOs declared in France between 2007 and 2017. In 19 of these FBOs, Bt was the only microorganism detected, making it the most likely causal agent. Searching for its putative origin of contamination, we noticed that more than 50% of Bt isolates were collected from dishes containing raw vegetables, in particular tomatoes (48%). Moreover, the genomic characterization of isolates showed that most FBO-associated Bt isolates exhibited a quantified genomic proximity to Bt strains, used as biopesticides, especially those from subspecies aizawai and kurstaki. Taken together, these results strengthen the hypothesis of an agricultural origin for the Bt contamination and call for further investigations on Bt pesticides.


Subject(s)
Bacillus thuringiensis/genetics , Food Microbiology , Genomics , Genotype , Phenotype , France , Genome, Bacterial/genetics
6.
Front Microbiol ; 11: 483, 2020.
Article in English | MEDLINE | ID: mdl-32265894

ABSTRACT

Plasmids are genetic elements that enable rapid adaptation and evolution by transferring genes conferring selective advantages to their hosts. Conjugative plasmids are predominantly responsible for the global dissemination of antimicrobial resistance, representing an important threat to global health. As the number of plasmid sequences grows exponentially, it becomes critical to depict the global diversity and decipher the distribution of circulating plasmids in the bacterial community. To this end, we created COMPASS, a novel and comprehensive database compiling 12,084 complete plasmids with associated metadata from 1571 distinct species isolated worldwide over more than 100 years. The curation of the database allowed us to identify identical plasmids across different bacteria revealing mainly intraspecies dissemination and rare cases of horizontal transmission. We outlined and analyzed all relevant features, plasmid properties, host range and characterized their replication and mobilization systems. After an exhaustive comparison of PlasmidFinder and MOB-typer, the MOB-typer-based analysis revealed that the current knowledge embedded in the current typing schemes fails to classify all the plasmid sequences collected in COMPASS. We were able to categorize 6828 and 5229 plasmids by replicon and MOB typing, respectively, mostly associated with Proteobacteria and Firmicutes. We then searched for the presence of multiple core genes involved in replication and propagation. Our results showed that 2403 plasmids carried multiple replicons that were distributed in 206 bacterial species. The co-integration of replicon types from different incompatibility (Inc) groups is an adaptive mechanism, which plays an important role in plasmid survival and dissemination by extending their host range. Our results highlight the crucial role of IncF alleles (present in 56% of all multireplicons) and revealed that IncH, IncR, and IncU replicons were also frequently carried in multireplicons. Here, we provided a comprehensive picture of the different IncF subtypes by identifying 20 different profiles in 849 IncF multireplicons, which were mostly associated with Enterobacteriaceae. These results could provide the basis for a novel IncF plasmid nomenclature based on different allelic profiles.

7.
BMC Genomics ; 21(1): 130, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32028892

ABSTRACT

BACKGROUND: Listeria monocytogenes Clonal Complexes (CCs) have been epidemiologically associated with foods, especially ready-to-eat (RTE) products for which the most likely source of contamination depends on the occurrence of persisting clones in food-processing environments (FPEs). As the ability of L. monocytogenes to adapt to environmental stressors met in the food chain challenges the efforts to its eradication from FPEs, the threat of persistent strains to the food industry and public health authorities continues to rise. In this study, 94 food and FPEs L. monocytogenes isolates, representing persistent subtypes contaminating three French seafood facilities over 2-6 years, were whole-genome sequenced to characterize their genetic diversity and determine the biomarkers associated with long-term survival in FPEs. RESULTS: Food and FPEs isolates belonged to five CCs, comprising long-term intra- and inter-plant persisting clones. Mobile genetic elements (MGEs) such as plasmids, prophages and transposons were highly conserved within CCs, some of which harboured genes for resistance to chemical compounds and biocides used in the processing plants. Some of these genes were found in a 90.8 kbp plasmid, predicted to be" mobilizable", identical in isolates from CC204 and CC155, and highly similar to an 81.6 kbp plasmid from isolates belonging to CC7. These similarities suggest horizontal transfer between isolates, accompanied by deletion and homologous recombination in isolates from CC7. Prophage profiles characterized persistent clonal strains and several prophage-loci were plant-associated. Notably, a persistent clone from CC101 harboured a novel 31.5 kbp genomic island that we named Listeria genomic island 3 (LGI3), composed by plant-associated loci and chromosomally integrating cadmium-resistance determinants cadA1C. CONCLUSIONS: Genome-wide analysis indicated that inter- and intra-plant persisting clones harbour conserved MGEs, likely acquired in FPEs and maintained by selective pressures. The presence of closely related plasmids in L. monocytogenes CCs supports the hypothesis of horizontal gene transfer conferring enhanced survival to FPE-associated stressors, especially in hard-to-clean harbourage sites. Investigating the MGEs evolutionary and transmission dynamics provides additional resolution to trace-back potentially persistent clones. The biomarkers herein discovered provide new tools for better designing effective strategies for the removal or reduction of resident L. monocytogenes in FPEs to prevent contamination of RTE seafood.


Subject(s)
Food-Processing Industry , Interspersed Repetitive Sequences , Listeria monocytogenes/genetics , Seafood/microbiology , France , Genes, Bacterial , Genome, Bacterial , Listeria monocytogenes/classification , Listeria monocytogenes/isolation & purification , Phylogeny , Plasmids/genetics , Polymorphism, Single Nucleotide , Prophages/genetics , Stress, Physiological/genetics
8.
Front Microbiol ; 10: 2413, 2019.
Article in English | MEDLINE | ID: mdl-31708892

ABSTRACT

The investigation of foodborne outbreaks (FBOs) from genomic data typically relies on inspecting the relatedness of samples through a phylogenomic tree computed on either SNPs, genes, kmers, or alleles (i.e., cgMLST and wgMLST). The phylogenomic reconstruction is often time-consuming, computation-intensive and depends on hidden assumptions, pipelines implementation and their parameterization. In the context of FBO investigations, robust links between isolates are required in a timely manner to trigger appropriate management actions. Here, we propose a non-parametric statistical method to assert the relatedness of samples (i.e., outbreak cases) or whether to reject them (i.e., non-outbreak cases). With typical computation running within minutes on a desktop computer, we benchmarked the ability of three non-parametric statistical tests (i.e., Wilcoxon rank-sum, Kolmogorov-Smirnov and Kruskal-Wallis) on six different genomic features (i.e., SNPs, SNPs excluding recombination events, genes, kmers, cgMLST alleles, and wgMLST alleles) to discriminate outbreak cases (i.e., positive control: C+) from non-outbreak cases (i.e., negative control: C-). We leveraged four well-characterized and retrospectively investigated FBOs of Salmonella Typhimurium and its monophasic variant S. 1,4,[5],12:i:- from France, setting positive and negative controls in all the assays. We show that the approaches relying on pairwise SNP differences distinguished all four considered outbreaks in contrast to the other tested genomic features (i.e., genes, kmers, cgMLST alleles, and wgMLST alleles). The freely available non-parametric method written in R has been designed to be independent of both the phylogenomic reconstruction and the detection methods of genomic features (i.e., SNPs, genes, kmers, or alleles), making it widely and easily usable to anybody working on genomic data from suspected samples.

9.
Nat Ecol Evol ; 2(3): 557-566, 2018 03.
Article in English | MEDLINE | ID: mdl-29403074

ABSTRACT

Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.


Subject(s)
Blattellidae/genetics , Evolution, Molecular , Genome , Isoptera/genetics , Social Behavior , Animals , Biological Evolution , Blattellidae/physiology , Isoptera/physiology , Phylogeny
10.
PLoS Pathog ; 13(11): e1006752, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29176894

ABSTRACT

The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.


Subject(s)
Coenzymes/biosynthesis , Gene Transfer, Horizontal , Metalloproteins/biosynthesis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Oxygen/metabolism , Tuberculosis/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Gene Expression Regulation, Bacterial , Humans , Hypoxia/metabolism , Hypoxia/microbiology , Mice , Mice, Inbred C57BL , Molybdenum Cofactors , Mycobacterium/genetics , Mycobacterium/metabolism , Nitrates/metabolism , Pteridines , Tuberculosis/metabolism
11.
BMC Genomics ; 18(1): 882, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29145803

ABSTRACT

BACKGROUND: Small regulatory RNAs (sRNAs) are widely found in bacteria and play key roles in many important physiological and adaptation processes. Studying their evolution and screening for events of coevolution with other genomic features is a powerful way to better understand their origin and assess a common functional or adaptive relationship between them. However, evolution and coevolution of sRNAs with coding genes have been sparsely investigated in bacterial pathogens. RESULTS: We designed a robust and generic phylogenomics approach that detects correlated evolution between sRNAs and protein-coding genes using their observed and inferred patterns of presence-absence in a set of annotated genomes. We applied this approach on 79 complete genomes of the Listeria genus and identified fifty-two accessory sRNAs, of which most were present in the Listeria common ancestor and lost during Listeria evolution. We detected significant coevolution between 23 sRNA and 52 coding genes and inferred the Listeria sRNA-coding genes coevolution network. We characterized a main hub of 12 sRNAs that coevolved with genes encoding cell wall proteins and virulence factors. Among them, an sRNA specific to L. monocytogenes species, rli133, coevolved with genes involved either in pathogenicity or in interaction with host cells, possibly acting as a direct negative post-transcriptional regulation. CONCLUSIONS: Our approach allowed the identification of candidate sRNAs potentially involved in pathogenicity and host interaction, consistent with recent findings on known pathogenicity actors. We highlight four sRNAs coevolving with seven internalin genes, some of which being important virulence factors in Listeria.


Subject(s)
Bacterial Proteins/genetics , Evolution, Molecular , Listeria/genetics , RNA, Small Untranslated/genetics , Gene Regulatory Networks , Genes, Bacterial , Genome, Bacterial , Listeria/pathogenicity
12.
Bioinformatics ; 33(20): 3283-3285, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28637232

ABSTRACT

MOTIVATION: Genome sequencing projects sometimes uncover more organisms than expected, especially for complex and/or non-model organisms. It is therefore useful to develop software to identify mix of organisms from genome sequence assemblies. RESULTS: Here we present PhylOligo, a new package including tools to explore, identify and extract organism-specific sequences in a genome assembly using the analysis of their DNA compositional characteristics. AVAILABILITY AND IMPLEMENTATION: The tools are written in Python3 and R under the GPLv3 Licence and can be found at https://github.com/itsmeludo/Phyloligo/. CONTACT: ludovic.mallet@inra.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics/methods , Sequence Analysis, DNA/methods , Software , Bacteria/genetics , Eukaryota/genetics
13.
Bioinform Biol Insights ; 10: 121-31, 2016.
Article in English | MEDLINE | ID: mdl-27493475

ABSTRACT

While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies.

14.
Zoology (Jena) ; 119(4): 298-306, 2016 08.
Article in English | MEDLINE | ID: mdl-27421680

ABSTRACT

Among the most common forms of interaction between species are those between hosts and their parasites and they have important implications for evolutionary theory. Understanding both the phenotypic and genotypic processes governing such interactions is a major endeavour in biology, but is a complex and challenging task. The development of next generation sequencing technologies has recently opened up this field from a molecular perspective, allowing us access to the genomic data underlying laboratory or wild phenotypes. The data obtained from such technologies has many advantages over previous methods, such as being more abundant, often more accurate, less labour intensive to generate and more cost effective to produce. We present a review of the impact of next generation sequencing data on the study of host-parasite evolution and current topics being explored with this data. We focus on two main data types, genomic and transcriptomic. We discuss popular computational approaches which can help us characterise the molecular forces driving host-parasite systems and highlight some studies which have utilised such approaches to gain information about particular immune processes. We furthermore highlight some promising perspectives from emerging and new technologies which will allow researchers to reach a deeper understanding of these interactions.


Subject(s)
Computer Simulation , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Models, Immunological , Nucleic Acid Amplification Techniques/methods , Animals , Biological Evolution , Gene Expression Regulation/immunology
15.
Genome Biol Evol ; 7(10): 2896-912, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26454013

ABSTRACT

Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39-43 Mb) and gene content (12,283-14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo).


Subject(s)
Evolution, Molecular , Genome, Fungal , Magnaporthe/genetics , Adaptation, Biological , Base Sequence , Biological Evolution , Burkholderia/genetics , Burkholderia/isolation & purification , DNA Transposable Elements , Digitaria/microbiology , Fungal Proteins/genetics , Genes, Fungal , Genetic Variation , Magnaporthe/isolation & purification , Oryza/microbiology , Plant Diseases/microbiology , Sequence Analysis, DNA
16.
Bioinformatics ; 28(9): 1270-1, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22426345

ABSTRACT

MOTIVATION: This website allows the detection of horizontal transfers based on a combination of parametric methods and proposes an origin by researching neighbors in a bank of genomic signatures. This bank is also used to research an origin to DNA fragments from metagenomics studies. RESULTS: Different services are provided like the possibility of inferring a phylogenetic tree with sequence signatures or comparing two genomes and displaying the rearrangements that happened since their separation. AVAILABILITY AND IMPLEMENTATION: http://gohtam.rpbs.univ-paris-diderot.fr/


Subject(s)
Gene Transfer, Horizontal , Metagenomics/methods , Phylogeny , Bacteria/classification , Bacteria/genetics , Genome , Genome, Bacterial , Sequence Alignment/methods , Sequence Analysis, DNA/methods
17.
Mol Genet Metab ; 105(3): 484-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22178546

ABSTRACT

BACKGROUND AND AIMS: Among cardiovascular risk factor, people with Down syndrome have a lower plasma homocysteine level. In a previous study, we have shown that DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a), a serine/threonine kinase found on human chromosome 21, is implicated on homocysteine metabolism regulation. Indeed, mice that overexpress in liver this kinase have a lower plasma homocysteine level concomitant with an increased hepatic S-adenosyhomocysteine hydrolase (SAHH) activity, which depends on the activation of NAD(P)H:quinone oxidoreductase-1 (NQO1). Since NQO1 gene transcription is under the control of NRF2 and AhR, the aim of the present study was to analyze the effect of DYRK1A overexpression in mice onto NRF2 and AhR signaling pathways. METHODS: Effects of DYRK1A overexpression were examined in mice overexpressing Dyrk1a treated with an inhibitor, harmine, by real-time quantitative reverse-transcription polymerase reaction and western blotting. RESULTS: We found that overexpression of DYRK1A increases the nuclear NRF2 quantity, concomitant with the activation of ERK1/2. We also show that the overexpression of Dyrk1a has no effect on PI3K/AKT activation, and AhR signaling pathway in liver of mice. CONCLUSIONS: Our results reveal a link between DYRK1A and NRF2 signaling pathway.


Subject(s)
NAD(P)H Dehydrogenase (Quinone)/biosynthesis , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Harmine/pharmacology , Homocysteine/metabolism , Liver/metabolism , MAP Kinase Signaling System , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/biosynthesis , Mitogen-Activated Protein Kinases/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/biosynthesis , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Dyrk Kinases
18.
BMC Genomics ; 11: 171, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20226043

ABSTRACT

BACKGROUND: Numerous cases of horizontal transfers (HTs) have been described for eukaryote genomes, but in contrast to prokaryote genomes, no whole genome evaluation of HTs has been carried out. This is mainly due to a lack of parametric methods specially designed to take the intrinsic heterogeneity of eukaryote genomes into account. We applied a simple and tested method based on local variations of genomic signatures to analyze the genome of the pathogenic fungus Aspergillus fumigatus. RESULTS: We detected 189 atypical regions containing 214 genes, accounting for about 1 Mb of DNA sequences. However, the fraction of atypical DNA detected was smaller than the average amount detected in the same conditions in prokaryote genomes (3.1% vs 5.6%). It appeared that about one third of these regions contained no annotated genes, a proportion far greater than in prokaryote genomes. When analyzing the origin of these HTs by comparing their signatures to a home made database of species signatures, 3 groups of donor species emerged: bacteria (40%), fungi (25%), and viruses (22%). It is to be noticed that though inter-domain exchanges are confirmed, we only put in evidence very few exchanges between eukaryotic kingdoms. CONCLUSIONS: In conclusion, we demonstrated that HTs are not negligible in eukaryote genomes, bearing in mind that in our stringent conditions this amount is a floor value, though of a lesser extent than in prokaryote genomes. The biological mechanisms underlying those transfers remain to be elucidated as well as the biological functions of the transferred genes.


Subject(s)
Aspergillus fumigatus/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Fungal , DNA, Fungal/genetics , Genomics/methods , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...