Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 78(2): 436-45, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25710164

ABSTRACT

The majority of human listeriosis cases appear to be caused by consumption of ready-to-eat (RTE) foods contaminated at the time of consumption with high levels of Listeria monocytogenes. Although strategies to prevent growth of L. monocytogenes in RTE products are critical for reducing the incidence of human listeriosis, control of postprocessing environmental contamination of RTE meat and poultry products is an essential component of a comprehensive L. monocytogenes intervention and control program. Complete elimination of postprocessing L. monocytogenes contamination is challenging because this pathogen is common in various environments outside processing plants and can persist in food processing environments for years. Persistent L. monocytogenes strains in processing plants have been identified as the most common postprocessing contaminants of RTE foods and the cause of multiple listeriosis outbreaks. Identification and elimination of L. monocytogenes strains persisting in processing plants is thus critical for (i) compliance with zero-tolerance regulations for L. monocytogenes in U.S. RTE meat and poultry products and (ii) reduction of the incidence of human listeriosis. The seek-and-destroy process is a systematic approach to finding sites of persistent strains (niches) in food processing plants, with the goal of either eradicating or mitigating effects of these strains. This process has been used effectively to address persistent L. monocytogenes contamination in food processing plants, as supported by peer-reviewed evidence detailed here. Thus, a regulatory environment that encourages aggressive environmental Listeria testing is required to facilitate continued use of this science-based strategy for controlling L. monocytogenes in RTE foods.


Subject(s)
Fast Foods/microbiology , Food Contamination/analysis , Food Handling/methods , Listeria monocytogenes/growth & development , Listeriosis/microbiology , Animals , Food Contamination/prevention & control , Food Handling/standards , Humans , United States
2.
J Food Prot ; 76(5): 796-811, 2013 May.
Article in English | MEDLINE | ID: mdl-23643121

ABSTRACT

Listeria monocytogenes persistence in food processing plants is a key source of postprocessing contamination of ready-to-eat foods. Thus, identification and elimination of sites where L. monocytogenes persists (niches) is critical. Two smoked fish processing plants were used as models to develop and implement environmental sampling plans (i) to identify persistent L. monocytogenes subtypes (EcoRI ribotypes) using two statistical approaches and (ii) to identify and eliminate likely L. monocytogenes niches. The first statistic, a binomial test based on ribotype frequencies, was used to evaluate L. monocytogenes ribotype recurrences relative to reference distributions extracted from a public database; the second statistic, a binomial test based on previous positives, was used to measure ribotype occurrences as a risk factor for subsequent isolation of the same ribotype. Both statistics revealed persistent ribotypes in both plants based on data from the initial 4 months of sampling. The statistic based on ribotype frequencies revealed persistence of particular ribotypes at specific sampling sites. Two adaptive sampling strategies guided plant interventions during the study: sampling multiple times before and during processing and vector swabbing (i.e., sampling of additional sites in different directions [vectors] relative to a given site). Among sites sampled for 12 months, a Poisson model regression revealed borderline significant monthly decreases in L. monocytogenes isolates at both plants (P = 0.026 and 0.076). Our data indicate elimination of an L. monocytogenes niche on a food contact surface; niches on nonfood contact surfaces were not eliminated. Although our data illustrate the challenge of identifying and eliminating L. monocytogenes niches, particularly at nonfood contact sites in small and medium plants, the methods for identification of persistence we describe here should broadly facilitate science-based identification of microbial persistence.


Subject(s)
Fish Products/microbiology , Food Contamination/analysis , Food-Processing Industry/standards , Listeria monocytogenes/isolation & purification , Models, Statistical , Animals , Consumer Product Safety , Environmental Microbiology , Food Contamination/statistics & numerical data , Food-Processing Industry/statistics & numerical data , Humans , Listeria monocytogenes/genetics , Ribotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...