Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38884936

ABSTRACT

In Saudi Arabia, water pollution and drinking water scarcity pose a major challenge and jeopardise the achievement of sustainable development goals. The urgent need for rapid and accurate monitoring and assessment of water quality requires sophisticated, data-driven solutions for better decision-making in water management. This study aims to develop optimised data-driven models for comprehensive water quality assessment to enable informed decisions that are critical for sustainable water resources management. We used an entropy-weighted arithmetic technique to calculate the Water Quality Index (WQI), which integrates the World Health Organization (WHO) standards for various water quality parameters. Our methodology incorporated advanced machine learning (ML) models, including decision trees, random forests (RF) and correlation analyses to select features essential for identifying critical water quality parameters. We developed and optimised data-driven models such as gradient boosting machines (GBM), deep neural networks (DNN) and RF within the H2O API framework to ensure efficient data processing and handling. Interpretation of these models was achieved through a three-pronged explainable artificial intelligence (XAI) approach: model diagnosis with residual analysis, model parts with permutation-based feature importance and model profiling with partial dependence plots (PDP), accumulated local effects (ALE) plots and individual conditional expectation (ICE) plots. The quantitative results revealed insightful findings: fluoride and residual chlorine had the highest and lowest entropy weights, respectively, indicating their differential effects on water quality. Over 35% of the water samples were categorised as 'unsuitable' for consumption, highlighting the urgency of taking action to improve water quality. Amongst the optimised models, the Random Forest (model 79) and the Deep Neural Network (model 81) proved to be the most effective and showed robust predictive abilities with R2 values of 0.96 and 0.97 respectively for testing dataset. Model profiling as XAI highlighted the significant influence of key parameters such as nitrate, total hardness and pH on WQI predictions. These findings enable targeted water quality improvement measures that are in line with sustainable water management goals. Therefore, our study demonstrates the potential of advanced, data-driven methods to revolutionise water quality assessment in Saudi Arabia. By providing a more nuanced understanding of water quality dynamics and enabling effective decision-making, these models contribute significantly to the sustainable management of valuable water resources.

2.
Environ Sci Pollut Res Int ; 31(20): 29811-29835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592629

ABSTRACT

Landslide susceptibility mapping is essential for reducing the risk of landslides and ensuring the safety of people and infrastructure in landslide-prone areas. However, little research has been done on the development of well-optimized Elman neural networks (ENN), deep neural networks (DNN), and artificial neural networks (ANN) for robust landslide susceptibility mapping (LSM). Additionally, there is a research gap regarding the use of Bayesian optimization and the derivation of SHapley Additive exPlanations (SHAP) values from optimized models. Therefore, this study aims to optimize DNN, ENN, and ANN models using Bayesian optimization for landslide susceptibility mapping and derive SHAP values from these optimized models. The LSM models have been validated using the receiver operating characteristics curve, confusion matrix, and other twelve error matrices. The study used six machine learning-based feature selection techniques to identify the most important variables for predicting landslide susceptibility. The decision tree, random forest, and bagging feature selection models showed that slope, elevation, DFR, annual rainfall, LD, DD, RD, and LULC are influential variables, while geology and soil texture have less influence. The DNN model outperformed the other two models, covering 7839.54 km2 under the very low landslide susceptibility zone and 3613.44 km2 under the very high landslide susceptibility zone. The DNN model is better suited for generating landslide susceptibility maps, as it can classify areas with higher accuracy. The model identified several key factors that contribute to the initiation of landslides, including high elevation, built-up and agricultural land use, less vegetation, aspect (north and northwest), soil depth less than 140 cm, high rainfall, high lineament density, and a low distance from roads. The study's findings can help stakeholders make informed decisions to reduce the risk of landslides and ensure the safety of people and infrastructure in landslide-prone areas.


Subject(s)
Bayes Theorem , Landslides , Neural Networks, Computer , Machine Learning
3.
Article in English | MEDLINE | ID: mdl-38568312

ABSTRACT

Floods cause substantial losses to life and property, especially in flood-prone regions like northwestern Bangladesh. Timely and precise evaluation of flood impacts is critical for effective flood management and decision-making. This research demonstrates an integrated approach utilizing machine learning and Google Earth Engine to enable real-time flood assessment. Synthetic aperture radar (SAR) data from Sentinel-1 and the Google Earth Engine platform were employed to generate near real-time flood maps of the 2020 flood in Kurigram and Lalmonirhat. An automatic thresholding technique quantified flooded areas. For land use/land cover (LULC) analysis, Sentinel-2's high resolution and machine learning models like artificial neural networks (ANN), random forests (RF) and support vector machines (SVM) were leveraged. ANN delivered the best LULC mapping with 0.94 accuracy based on metrics like accuracy, kappa, mean F1 score, mean sensitivity, mean specificity, mean positive predictive value, mean negative value, mean precision, mean recall, mean detection rate and mean balanced accuracy. Results showed over 600,000 people exposed at peak inundation in July-about 17% of the population. The machine learning-enabled LULC maps reliably identified vulnerable areas to prioritize flood management. Over half of croplands flooded in July. This research demonstrates the potential of integrating SAR, machine learning and cloud computing to empower authorities through real-time monitoring and accurate LULC mapping essential for effective flood response. The proposed comprehensive methodology can assist stakeholders in developing data-driven flood management strategies to reduce impacts.

4.
Heliyon ; 10(4): e25731, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390072

ABSTRACT

This study aims to quantitatively and qualitatively assess the impact of urbanisation on the urban ecosystem in the city of Abha, Saudi Arabia, by analysing land use changes, urbanisation processes and their ecological impacts. Using a multidisciplinary approach, a novel remote sensing-based urban ecological condition index (RSUSEI) will be developed and applied to assess the ecological status of urban surfaces. Therefore, the identification and quantification of urbanisation is important. To do so, we used hyper-tuned artificial neural network (ANN) as well as Land Cover Change Rate (LCCR), Land Cover Index (LCI) and Landscape Expansion Index (LEI). For the development of (RSUSEI), we have used four advanced models such as fuzzy Logic, Principle Component Analysis (PCA), Analytical Hierarchy Process (AHP) and fuzzy Analytical Hierarchy Process (FAHP) to integrate various ecological parameters. In order to obtain more information for better decision making in urban planning, sensitivity and uncertainty analyses based on a deep neural network (DNN) were also used. The results of the study show a multi-layered pattern of urbanisation in Saudi Arabian cities reflected in the LCCR, indicating rapid urban expansion, especially in the built-up areas with an LCCR of 0.112 over the 30-year period, corresponding to a more than four-fold increase in urban land cover. At the same time, the LCI shows a remarkable increase in 'built-up' areas from 3.217% to 13.982%, reflecting the substantial conversion of other land cover types to urban uses. Furthermore, the LEI emphasises the complexity of urban growth. Outward expansion (118.98 km2), Edge-Expansion (95.22 km2) and Infilling (5.00 km2) together paint a picture of a city expanding outwards while filling gaps in the existing urban fabric. The RSUSEI model shows that the zone of extremely poor ecological condition covers an area of 157-250 km2, while the natural zone covers 91-410 km2. The DNN based sensitivity analysis is useful to determine the optimal model, while the integrated models have lower input parameter uncertainty than other models. The results of the study have significant implications for the management of urban ecosystems in arid areas and the protection of natural habitats while improving the quality of life of urban residents. The RSUSEI model can be used effectively to assess urban surface ecology and inform urban management techniques.

5.
Environ Sci Pollut Res Int ; 31(2): 3169-3194, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38082044

ABSTRACT

In the mountainous region of Asir region of Saudi Arabia, road construction activities are closely associated with frequent landslides, posing significant risks to both human life and infrastructural development. This highlights an urgent need for a highly accurate landslide susceptibility map to guide future development and risk mitigation strategies. Therefore, this study aims to (1) develop robust well-optimised deep learning (DL) models for predicting landslide susceptibility and (2) conduct a comprehensive sensitivity analysis to quantify the impact of each parameter influencing landslides. To achieve these aims, three advanced DL models-Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and Bayesian-optimised CNN with an attention mechanism-were rigorously trained and validated. Model validation included eight matrices, calibration curves, and Receiver Operating Characteristic (ROC) and Precision-Recall curves. Multicollinearity was examined using Variance Inflation Factor (VIF) to ensure variable independence. Additionally, sensitivity analysis was used to interpret the models and explore the influence of parameters on landslide. Results showed that road networks significantly influenced the areas identified as high-risk zones. Specifically, in the 1-km buffer around roadways, CNN_AM identified 10.42% of the area as 'Very High' susceptibility-more than double the 4.04% indicated by DNN. In the extended 2-km buffer zone around roadways, Bayesian CNN_AM continued to flag a larger area as Very High risk (7.46%), in contrast to DNN's 3.07%. In performance metrics, CNN_AM outshined DNN and regular CNN models, achieving near-perfect scores in Area Under the Curve (AUC), precision-recall, and overall accuracy. Sensitivity analysis highlighted 'Soil Texture', 'Geology', 'Distance to Road', and 'Slope' as crucial for landslide prediction. This research offers a robust, high-accuracy model that emphasises the role of road networks in landslide susceptibility, thereby providing valuable insights for planners and policymakers to proactively mitigate landslide risks in vulnerable zones near existing and future road infrastructure.


Subject(s)
Deep Learning , Landslides , Humans , Geographic Information Systems , Bayes Theorem , Saudi Arabia
6.
J Environ Manage ; 351: 119714, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056328

ABSTRACT

Evapotranspiration (ETo) is a complex and non-linear hydrological process with a significant impact on efficient water resource planning and long-term management. The Penman-Monteith (PM) equation method, developed by the Food and Agriculture Organization of the United Nations (FAO), represents an advancement over earlier approaches for estimating ETo. Eto though reliable, faces limitations due to the requirement for climatological data not always available at specific locations. To address this, researchers have explored soft computing (SC) models as alternatives to conventional methods, known for their exceptional accuracy across disciplines. This critical review aims to enhance understanding of cutting-edge SC frameworks for ETo estimation, highlighting advancements in evolutionary models, hybrid and ensemble approaches, and optimization strategies. Recent applications of SC in various climatic zones in Bangladesh are evaluated, with the order of preference being ANFIS > Bi-LSTM > RT > DENFIS > SVR-PSOGWO > PSO-HFS due to their consistently high accuracy (RMSE and R2). This review introduces a benchmark for incorporating evolutionary computation algorithms (EC) into ETo modeling. Each subsection addresses the strengths and weaknesses of known SC models, offering valuable insights. The review serves as a valuable resource for experienced water resource engineers and hydrologists, both domestically and internationally, providing comprehensive SC modeling studies for ETo forecasting. Furthermore, it provides an improved water resources monitoring and management plans.


Subject(s)
Algorithms , Soft Computing , Bangladesh , Hydrology , Agriculture
7.
Sci Rep ; 13(1): 22240, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097613

ABSTRACT

Accurate and in-time prediction of crop yield plays a crucial role in the planning, management, and decision-making processes within the agricultural sector. In this investigation, utilizing area under irrigation (%) as an exogenous variable, we have made an exertion to assess the suitability of different hybrid models such as ARIMAX (Autoregressive Integrated Moving Average with eXogenous Regressor)-TDNN (Time-Delay Neural Network), ARIMAX-NLSVR (Non-Linear Support Vector Regression), ARIMAX-WNN (Wavelet Neural Network), ARIMAX-CNN (Convolutional Neural Network), ARIMAX-RNN (Recurrent Neural Network) and ARIMAX-LSTM (Long Short Term Memory) as compared to their individual counterparts for yield forecasting of major Rabi crops in India. The accuracy of the ARIMA model has also been considered as a benchmark. Empirical outcomes reveal that the ARIMAX-LSTM hybrid modeling combination outperforms all other time series models in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE) values. For these models, an average improvement of RMSE and MAPE values has been observed to be 10.41% and 12.28%, respectively over all other competing models and 15.83% and 18.42%, respectively over the benchmark ARIMA model. The incorporation of the area under irrigation (%) as an exogenous variable in the ARIMAX framework and the inbuilt capability of the LSTM model to process complex non-linear patterns have been observed to significantly enhance the accuracy of forecasting. The performance supremacy of other hybrid models over their individual counterparts has also been evident. The results also suggest avoiding any performance generalization of individual models for their hybrid structures.

8.
Environ Sci Pollut Res Int ; 30(60): 126057-126071, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008840

ABSTRACT

Gabions involve low construction technology and are flexible, economically viable, and environmentally friendly. They are now widely accepted as a standard construction material on a global scale. Gabion water barrier structures can be used for a variety of objectives, including flood control, land development, regulation of sediment transport, and catchment restoration. While intense water runoff can cause a large hole or submerge regions in solid water barrier constructions, gabion structures can sink down into the earth and protect the land from environmental and economic damage. The present study reviews the design/construction procedure of gabion water barrier structures and field/laboratory and numerical investigations for their performance in water and land conservation. Various applications of gabion water barrier structures, especially for economic/social impact and environmental degradation control, which qualify the gabion water barrier structures as a sustainable technique for water and land conservation, are reviewed. Future aspects and challenges ahead are also discussed.


Subject(s)
Conservation of Natural Resources , Water , Conservation of Natural Resources/methods , Construction Materials
9.
Article in English | MEDLINE | ID: mdl-37391562

ABSTRACT

The vulnerability of coastal regions to climate change is a growing global concern, particularly in Bangladesh, which is vulnerable to flooding and storm surges due to its low-lying coastal areas. In this study, we used the fuzzy analytical hierarchy process (FAHP) method to assess the physical and social vulnerability of the entire coastal areas of Bangladesh, using 10 critical factors to evaluate the coastal vulnerability model (CVM). Our analysis indicates that a significant portion of the coastal regions of Bangladesh is vulnerable to the impacts of climate change. We found that one-third of the study area, encompassing around 13,000 km2, was classified as having high or very high coastal vulnerability. Districts in the central delta region, such as Barguna, Bhola, Noakhali, Patuakhali, and Pirojpur, were found to have high to very high physical vulnerability. Meanwhile, the southern parts of the study area were identified as highly socially vulnerable. Our findings also showed that the coastal areas of Patuakhali, Bhola, Barguna, Satkhira, and Bagerhat were particularly vulnerable to the impacts of climate change. The coastal vulnerability map we developed using the FAHP method showed satisfactory modeling, with an AUC of 0.875. By addressing the physical and social vulnerability factors identified in our study, policymakers can take proactive steps to ensure the safety and wellbeing of coastal residents in the face of climate change.

10.
Air Qual Atmos Health ; 16(6): 1117-1139, 2023.
Article in English | MEDLINE | ID: mdl-37303964

ABSTRACT

Fine particulate matter (PM2.5) has become a prominent pollutant due to rapid economic development, urbanization, industrialization, and transport activities, which has serious adverse effects on human health and the environment. Many studies have employed traditional statistical models and remote-sensing technologies to estimate PM2.5 concentrations. However, statistical models have shown inconsistency in PM2.5 concentration predictions, while machine learning algorithms have excellent predictive capacity, but little research has been done on the complementary advantages of diverse approaches. The present study proposed the best subset regression model and machine learning approaches, including random tree, additive regression, reduced error pruning tree, and random subspace, to estimate the ground-level PM2.5 concentrations over Dhaka. This study used advanced machine learning algorithms to measure the effects of meteorological factors and air pollutants (NOX, SO2, CO, and O3) on the dynamics of PM2.5 in Dhaka from 2012 to 2020. Results showed that the best subset regression model was well-performed for forecasting PM2.5 concentrations for all sites based on the integration of precipitation, relative humidity, temperature, wind speed, SO2, NOX, and O3. Precipitation, relative humidity, and temperature have negative correlations with PM2.5. The concentration levels of pollutants are much higher at the beginning and end of the year. Random subspace is the optimal model for estimating PM2.5 because it has the least statistical error metrics compared to other models. This study suggests ensemble learning models to estimate PM2.5 concentrations. This study will help quantify ground-level PM2.5 concentration exposure and recommend regional government actions to prevent and regulate PM2.5 air pollution. Supplementary Information: The online version contains supplementary material available at 10.1007/s11869-023-01329-w.

11.
Environ Sci Pollut Res Int ; 30(26): 68716-68731, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37129826

ABSTRACT

Urbanization in India is having a significant impact on the environment and human health, as built-up areas are expanding while vegetation and water bodies are declining. To mitigate the negative effects of urbanization, there is an urgent need to monitor and manage the growth of cities through the creation of smart cities. Accurately identifying and mapping urban expansion patterns is crucial to achieving this goal, but this is currently lacking in India. To address this gap, this study takes a comprehensive approach to examining the processes of urban expansion in English Bazar Municipality, Malda, India. The study employs the random forest (RF) method for land use and land cover (LULC) mapping for the years 2001, 2011, and 2021 and then uses the frequency approach, landscape homogeneity, and fragmentation to model urban expansion over the same time period. The study also employs several landscape matrices to quantify urban expansion. The results of the study reveal a substantial increase in built-up areas from 601.26 hectares in 2001 to 859.13 hectares in 2021, accompanied by a corresponding decline in vegetation, cropland, and open land. This land use transition process has also led to increased fragmentation of the landscape. The spatiotemporal landscape homogeneity analysis identifies two transition zones (zone 2 and zone 1) surrounding the stable zone, which capture the new, small, isolated built-up areas and show a progression of urban expansion from 2001 to 2021. Overall, the study provides valuable insights into the changes in urban expansion and fragmentation in English Bazar Municipality. To promote sustainable urban development and enhance the quality of life for residents, it is important for stakeholders and the government to prioritize the conservation and creation of green and blue spaces. This can be accomplished through the incorporation of green infrastructure, smart city principles, community engagement and education, and partnerships with local businesses.


Subject(s)
Benchmarking , Urbanization , Humans , Cities , Quality of Life , Environmental Monitoring/methods , India , Conservation of Natural Resources
12.
Environ Sci Pollut Res Int ; 30(29): 73753-73779, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37195618

ABSTRACT

Mangrove ecosystems provide numerous benefits, including carbon storage, coastal protection and food for marine organisms. However, mapping and monitoring of mangrove status in some regions, such as the Red Sea area, has been hindered by a lack of data, accurate and precise maps and technical expertise. In this study, an advanced machine learning algorithm was proposed to produce an accurate and precise high-resolution land use map that includes mangroves in the Al Wajh Bank habitat in northeastern Saudi Arabia. To achieve this, high-resolution multispectral images were generated using an image fusion technique, and machine learning algorithms were applied, including artificial neural networks, random forests and support vector machine algorithms. The performance of the models was evaluated using various matrices, and changes in mangrove distribution and connectivity were assessed using the landscape fragmentation model and Getis-Ord statistics. The research gap that this study aims to address is the lack of accurate and precise mapping and assessment of mangrove status in the Red Sea area, particularly in data-scarce regions. Our study produced high-resolution mobile laser scanning (MLS) imagery of 15-m length for 2014 and 2022, and trained 5, 6 and 9 models for artificial neural networks, support vector machines and random forests (RF) to predict land use and land cover maps using 15-m and 30-m resolution MLS images. The best models were identified using error matrices, and it was found that RF outperformed other models. According to the 15-m resolution map of 2022 and the best models of RF, the mangrove cover in the Al Wajh Bank is 27.6 km2, which increased to 34.99 km2 in the case of the 30-m resolution image of 2022, and was 11.94 km2 in 2014, indicating a doubling of the mangrove area. Landscape structure analysis revealed an increase in small core and hotspot areas, which were converted into medium core and very large hotspot areas in 2014. New mangrove areas were identified in the form of patches, edges, potholes and coldspots. The connectivity model showed an increase in connectivity over time, promoting biodiversity. Our study contributes to the promotion of the protection, conservation and planting of mangroves in the Red Sea area.


Subject(s)
Ecosystem , Wetlands , Conservation of Natural Resources/methods , Algorithms , Random Forest
13.
Environ Sci Pollut Res Int ; 30(24): 65916-65932, 2023 May.
Article in English | MEDLINE | ID: mdl-37093392

ABSTRACT

Urbanisation can cause a variety of environmental and health issues, which has prompted experts to evaluate degraded areas and develop management strategies aimed at promoting urban sustainability and reducing carbon emissions. In low-carbon cities, sustainable urban areas have low carbon emission and prioritised carbon reduction by implementing sustainable transportation, green infrastructure, and energy-efficient buildings. On the other hand, unsustainable urban areas tend to lack these priorities and rely heavily on non-renewable energy sources and have high carbon emission. Therefore, this study aims to identify the most sustainable and unsustainable regions in the Abha-Khamis Mushayet Twin City region of Saudi Arabia in respect to urbanisation and carbon emission during the period between 1990 and 2020. To do so, we used Landsat datasets to create land use land cover (LULC) maps and then calculated carbon storage, emission, and absorption using InVest software. Additionally, the study examined micro-climatic conditions by calculating the urban heat island (UHI) effect, which allowed determining sustainable and unsustainable regions by comparing the UHI model and carbon similarity and mismatch model using coupling coordination degree model (CCDM). The study found that during the last three decades, the LULC pattern of the region underwent significant alterations, resulting in a substantial decline in carbon storage from 710,425 Mg C/hm2 in 1990 to approximately 527,012.9 Mg C/hm2 in 2020. Conversely, carbon emissions were observed to be very high in areas with high built-up density, with emission levels exceeding 20 tons per annum. Whilst the areas of excess carbon have decreased significantly, the areas of excess carbon emission have increased over time, resulting in the UHI effect due to high greenhouse gases. By comparing the UHI and carbon similarity and mismatch model, the researchers found that over 280 km2 of the study area is unsustainable and has increased since 1990. In contrast, only about 410 km2 of the study area is currently sustainable. To promote sustainability, the study recommends several strategies such as carbon capture, utilisation, and storage; green infrastructure; and the use of renewable energy to manage carbon emissions.


Subject(s)
Carbon , Hot Temperature , Cities , Saudi Arabia , Environmental Monitoring/methods , Sustainable Growth
14.
Environ Sci Pollut Res Int ; 30(55): 116421-116439, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35091945

ABSTRACT

The rate of transformation of natural land use land cover (LULC) to the built-up areas is very high in the peri-urban areas of Indian metropolitan cities. Delhi National Capital Region (Delhi NCR) is an inter-state planning region, located in the central part of India. The region has attracted a larger chunk of population by providing better economic opportunities during last few decades. This has resulted in large-scale transformation of the LULC pattern in the region. Thus, this study is intended to analyze and quantify the LULC change and its drivers in the peri-urban areas of Delhi NCR using Landsat datasets. Based on an extensive literature survey, several potential drivers of the LULC change have been analyzed using ordinary least squares (OLS) and geographical weighted regression (GWR) for the Delhi NCR. The results from LULC classification showed that the built-up area has increased from 1.67 to 7.12% of the total area of Delhi NCR during 1990-2018 while other LULC types have declined significantly. The OLS results showed that migration and employment in the tertiary sector are the most important drivers of built-up expansion in the study area. The standard residuals and local R2 results from GWR showed spatial heterogeneity among the coefficients of the explanatory variables throughout the study area. This study can be helpful for the urban policy makers and planners for making better master plan of Delhi NCR and other cities of developing countries.


Subject(s)
Environmental Monitoring , Spatial Regression , Environmental Monitoring/methods , Cities , India , Employment , Urbanization , Conservation of Natural Resources
15.
Environ Sci Pollut Res Int ; 30(49): 106917-106935, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36178650

ABSTRACT

Rapid changes in land use and land cover (LULC) have ecological and environmental effects in metropolitan areas. Since the 1990s, Saudi Arabia's cities have undergone tremendous urban growth, causing urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, etc. This study evaluates the variance and heterogeneity in land surface temperature (LST) because of LULC changes in Abha-Khamis Mushyet, Saudi Arabia, from 1990 to 2020. The research aims to determine the impact of urban biophysical parameters on the High-High (H-H) LST cluster using geospatial, statistical, and machine learning techniques. The support vector machine (SVM) was used to map LULC. The land surface temperature (LST) has been derived using the mono-window algorithm (MWA). The local indicator of spatial associations (LISA) model was implemented on the spatiotemporal LST maps to identify LST clusters. Also, the parallel coordinate plot (PCP) approach was employed to examine the relationship between LST clusters and urban biophysical variables as a proxy of LULC. LULC maps show that urban areas rose by > 330% between 1990 and 2020. Built-up areas had an 83.6% transitional probability between 1990 and 2020. In addition, vegetation and agricultural land have been transformed into built-up areas by 17.9% and 21.8% respectively between 1990 and 2020. Uneven LULC changes in terms of built-up areas lead to increased LST hotspots. High normalized difference built-up index (NDBI) was linked to LST hotspots but not normalized difference water index (NDWI) or normalized difference vegetation index (NDVI). This research could help policymakers develop mitigation strategies for urban heat islands.


Subject(s)
Hot Temperature , Urbanization , Temperature , Cities , Ecosystem , Environmental Monitoring/methods
16.
Environ Sci Pollut Res Int ; 30(49): 106898-106916, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35930147

ABSTRACT

In the era of global urbanization, the cities across the world are experiencing significant change in the climate pattern. However, analysing the trend and pattern of rainfall over the urban areas has a number of challenges such as availability of long-term data as well as the uneven distribution of rain-gauge stations. In this research, the rainfall regionalization approach has been applied along with the advanced statistical techniques for analysing the trend and pattern of rainfall in the Delhi metropolitan city. Fuzzy C-means and K-means clustering techniques have been applied for the identification of homogeneous rainfall regions while innovative trend analysis (ITA) along with the family of Mann-Kendall (MK) tests has been applied for the trend analysis of rainfall. The result shows that in all rain-gauge stations of Delhi, an increasing trend in rainfall has been recorded during 1991-2018. But the rate of increase was low as the trend slope of ITA and Sen's slope in MK tests are low, which varies between 0.03 and 0.05 and 0.01 and 0.16, respectively. Furthermore, none of the rain-gauge stations have experienced a monotonic trend in rainfall as the null hypothesis has not been rejected (p value > 0.05) for any stations. Furthermore, the study shows that ITA has a better performance than the family of MK tests. The findings of this study may be utilized for the urban flood mitigation and solving other issues related to water resources in Delhi and other cities.


Subject(s)
Climate , Environmental Monitoring , Cities , Environmental Monitoring/methods , Rain , Cluster Analysis , India
17.
Environ Monit Assess ; 194(6): 396, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35488078

ABSTRACT

Drought has become a regular phenomenon in the western semi-arid regions of India, where severe drought occurs once in 8-9 years. Therefore, two drought indices, namely temperature condition index (TCI) and vegetation condition index (VCI), were prepared from using Landsat datasets to appraise and monitor of drought pattern for the pre- and post-monsoon seasons between 1996 and 2016 in the Latur district, the north-western part of India. Additionally, the average frequency layers (AFL) of all drought and land use indices were prepared to analyse the correlation between them. The results show a substantial increase in the area under high, very high and severe drought classes both pre- and post-monsoon seasons during the study period. The highest increase was noticed from the high drought class from 2532.45 to 4792.49 sq. km and 1559.84 to 3342.32 sq. km for pre- and post-monsoon season, respectively, based on the TCI and 1269.81 to 1787.77 sq. km in very high drought class for the post-monsoon season using the VCI. The correlation analysis showed that there exists a significant relationship between the land use indices and drought indices. However, the spatial pattern of correlation was heterogeneous for both pre- and post-monsoon seasons. The results of this research can help in the drought management and mitigation planning in the study area. In addition, a similar approach may be applied to analyse drought patterns in other places with similar geographic characteristics as both VCI and TCI are cost-effective and less time-consuming methods and produce reliable outcomes.


Subject(s)
Cyclonic Storms , Droughts , Environmental Monitoring/methods , Seasons , Temperature
18.
Environ Sci Pollut Res Int ; 29(6): 8577-8596, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34494185

ABSTRACT

Currently, a well-developed combination of irrigation water quality index (IWQIs) and entropy water quality index (EWQIs) for surface water appraisal in a polluted subtropical urban river is very scarce in the literature. To close this gap, we developed IWQIs by establishing statistics-based weights of variables recommended by FAO 29 standard value using the National Sanitation Foundation Water Quality Index (NSFWQI) compared with the proposed EWQIs based on information entropy in the Dhaleshwari River, Bangladesh. Fifty surface water samples were collected from five sampling locations during the dry and wet seasons and analyzed for sixteen variables. Principal component analysis (PCA), factor analysis (FA), Moran's spatial autocorrelation, and random forest (RF) model were employed in the datasets. Weights were allocated for primary variables to compute IWQI-1, 2 and EWQI-1, 2, respectively. The resultant IWQIs showed a similar trend with EWQIs and revealed poor to good quality water, with IWQI-1 for the dry season and IWQI-2 for the wet season is further suggested. The entropy theory recognized that Mg2+, Cr, TDS, and Cl- for the dry season and Cd, Cr, Cl-, and SO42- for the wet season are the major contaminants that affect irrigation water quality. The primary input variables were lessened to ultimately shortlisted ten variables, which revealed good performance in demonstrating water quality status since weights have come effectively from PCA than FA. The results of the RF model depict NO3-, Mg2+, and Cr as the most predominant variables influencing surface water quality. A significant dispersed pattern was detected for IWQImin-3 in the wet season (Moran's I>0). Overall, both IWQIs and EWQIs will generate water quality control cost-effective, completely objective to establish a scientific basis of sustainable water management in the study basin.


Subject(s)
Rivers , Water Quality , Bangladesh , Entropy , Environmental Monitoring
19.
Environ Sci Pollut Res Int ; 29(3): 3743-3762, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34389958

ABSTRACT

Landslides and other disastrous natural catastrophes jeopardise natural resources, assets, and people's lives. As a result, future resource management will necessitate landslide susceptibility mapping (LSM) using the best conditioning factors. In Aqabat Al-Sulbat, Asir province, Saudi Arabia, the goal of this study was to find optimal conditioning parameters dependent hybrid LSM. LSM was created using machine learning methods such as random forest (RF), logistic regression (LR), and artificial neural network (ANN). To build ensemble models, the LR was combined with RF and ANN models. The receiver operating characteristic (ROC) curve was used to validate the LSMs and determine which models were the best. Then, utilising random forest (RF), classification and regression tree (CART), and correlation feature selection, sensitivity analysis was carried out. Through sensitivity analysis, the most relevant conditioning factors were determined, and the best model was applied to the important parameters to build a highly robust LSM with fewer variables. The ROC curve was also used to evaluate the final model. The results show that two hybrid models (LR-ANN and LR-RF) were predicted the very high as 29.67-32.73 km2 and high LS regions as 21.84-33.38 km2, with LR predicting 22.34km2 as very high and 45.15km2 as high LS zones. The LR-RF appeared as best model (AUC: 0.941), followed by LR-ANN (AUC: 0.915) and LR (AUC: 0.872). Sensitivity analysis, on the other hand, allows for the exclusion of aspects, hillshade, drainage density, curvature, and TWI from LSM. The LSM was then predicted using the LR-RF model based on the remaining nine conditioning factors. With fewer variables, this model has achieved greater accuracy (AUC: 0.927). This comes very close to being the best hybrid model. As a result, it is strongly advised to choose conditioning parameters with caution, as redundant parameters would result in less resilient LSM. As a consequence, both time and resources would be saved, and precise LSM would indeed be possible.


Subject(s)
Landslides , Logistic Models , Machine Learning , Neural Networks, Computer , Saudi Arabia
20.
Environ Sci Pollut Res Int ; 29(17): 25112-25137, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34837616

ABSTRACT

In Saudi Arabia, identifying homogenous zones based on rainfall patterns is critical for ensuring a predictable and stable water resource and agriculture management strategy. As a result, the present research aims to identify Saudi Arabia's homogeneous rainfall zones and examine rainfall patterns in these areas. By proposing a novel trend analysis technique with a particular graphical representation, this study utilises and compares the traditional Mann-Kendall (MK) test, modified MK test, and basic Sen-innovative trend analysis (ITA) method. Another approach is to use the Pettit change point test to objectively identify subcategories as "low" or "high." The applications are based on 40-year rainfall records from 22 Saudi Arabian meteorological sites. K-means clustering and hierarchical clustering on principle component analysis (HCPC) were used to find homogeneous areas. The results of the homogeneous region identification revealed that the research area is divided into three clusters, each with three distinct climatic characteristics. Cluster 1 contains eight stations, whereas clusters 2 and 3 each have seven. The results of trend identification utilising the MK, MMK, and ITA tests revealed that cluster 1 had a falling rainfall trend, whereas cluster 2 had a very minor decreasing and increasing rainfall trend. Cluster 2 can be thought of as a transition zone. Cluster 3 observed an upward trend in rainfall. While the proposed new form of ITA produced similar results with more detailed analysis such as change point-based high and low value identification, and magnitude of decreasing and increasing trend, the proposed new form of ITA produced similar results with more detailed analysis such as change point-based high and low value identification. This study will serve as a foundation for future work by scientists and planners on the identification of climatic zones, the development of trend detection techniques, and the formulation of water resource management strategies.


Subject(s)
Agriculture , Meteorology , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL
...