Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 52(47): 17797-17809, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37781897

ABSTRACT

A novel dinuclear copper complex, [CuII2(L1)2] (L1 = 2-{[2-(8-hydroxyquinolin-2-yl)-1H-benzimidazol-1-yl]methyl}quinolin-8-ol) was synthesised and characterised through various spectroscopic techniques. This dinuclear complex (as an electrocatalyst) was employed to examine the catalytic ability towards an electrochemical hydrogen evolution reaction (HER). Redox studies in 95/5 (v/v) DMF/H2O with the addition of 30-equivalent AcOH (acid source) led to higher catalytic activities for the HER. The evolved H2, as the resultant product, was detected and confirmed from gas chromatography to afford a faradaic efficiency of 93% at an applied potential of -1.9 V vs. SCE. Based upon measurements of open-circuit potential and electrocatalytic responses, the mechanistic route for the reduction process using [CuII2(L1)2] was elucidated. Density functional theory studies reveal that through a concerted proton-coupled electron transfer (PCET) path, the HER proceeded via the formation of a Cu-H bond with a low activation energy for the dehydrogenation reaction.

2.
Inorg Chem ; 62(28): 10993-11008, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37387569

ABSTRACT

In this work, two novel dinuclear cobalt complexes, [CoII(hbqc)(H2O)]2 (Co-Cl) and [CoII(hbqn)(H2O)]2 (Co-NO2), featuring benzimidazole derived redox-active ligand have been synthesized to investigate their catalytic activities toward electrocatalytic proton reduction (where hbqc is 2-{[6-chloro-2-(8-hydroxyquinolin-2-yl)-1H-benzimidazol-1-yl]methyl}quinolin-8-ol and hbqn is 2-{[6-nitro-2-(8-hydroxyquinolin-2-yl)-1H-benzimidazol-1-yl]methyl}quinolin-8-ol). The electrochemical responses in 95/5 (v/v) DMF/H2O with the addition of 24 equiv of AcOH as a proton source manifest high catalytic activity for proton reduction to H2. The catalytic reduction event yields H2 at an applied potential of -1.9 V vs SCE. A faradaic efficiency of 85-89% was obtained from gas chromatography analysis. A series of experiments performed concluded the homogeneous behavior of these molecular electrocatalysts. Between the two complexes, the Cl-substituted analogue, Co-Cl, has an increased overpotential of 80 mV compared to its NO2-substituted counterpart, exhibiting lesser catalytic activity toward the reduction process. The high stability of electrocatalysts under the electrocatalytic conditions was established, as no noticeable degradation of catalysts was observed throughout the process. All these measurements were exploited to elucidate the mechanistic route by these molecular complexes for the reduction process. The mechanistic pathways were suggested to be operational with EECC (E: electrochemical and C: chemical). The overall reaction energy by NO2-substituted Co-NO2-catalyzed reaction is more exogenic than Cl-substituted Co-Cl-catalyzed reaction; the corresponding reaction energies are -88.9 and -85.1 kcal mol-1. The computational study indicates that Co-NO2 is more efficient toward molecular hydrogen formation reaction than Co-Cl.

3.
Chem Commun (Camb) ; 59(40): 6084-6087, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37128969

ABSTRACT

Herein, we demonstrate a facile method for the introduction of nitrogen in the lattices of nickel nanoparticles to form NiNx (x = 0.13, 0.20, 0.27). X-ray absorption spectroscopy reveals the contraction of the Ni-Ni bond and modulated coordination environment after nitrogen introduction. The NiN0.20 required 87 mV overpotential for -10 mA cm-2 cathodic current density in simulated seawater. The density functional theory calculations revealed favorable EH2Oads and ΔGHads after N-introduction.

4.
J Phys Chem A ; 127(17): 3788-3795, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37094099

ABSTRACT

We performed first-principles metadynamics simulations to explore the mechanistic pathway of oxygen-oxygen bond formation catalyzed by cis-bis(hydroxo) and cis-(hydroxo)oxo copper complexes. The ligands of considered complexes involve modified bipyridine ligands with oxo and hydroxo groups on 6, 6' positions. The study focuses on the kinetics and thermodynamics of the oxygen-oxygen bond formation. The individual migration of the proton to the hydroxyl group and hydroxide to the oxo and hydroxo moieties of the complexes was examined. The proton transfer requires more kinetic barrier than the hydroxide migration. The nature of the electronic density was analyzed with the help of spin population analysis. The molecular orbitals and natural orbital analysis were carried out to examine the nature of the orbitals involved in the oxygen-oxygen bond formation. The σ*(dx2-y2-px) molecular orbital of the Cu-O or Cu-OH bond overlaps with the pz orbital of the hydroxide ion in forming the oxygen-oxygen bond. The two-electron two-centered (2e--2C) bond is observed in the oxygen-oxygen bond formation. In the oxidation process, these ligands stabilize the electron density from the water or hydroxide ion. These redox-active ligands also help stabilize the formed hydrogen peroxide or peroxide complexes.

5.
J Phys Chem B ; 127(13): 2991-3000, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36960946

ABSTRACT

Mixed electrolytes perform better than single solvent electrolytes in aprotic lithium-O2 batteries in terms of stability and transportation. According to an experimental study, a mixed electrolyte consisting of dimethylacetamide (DMA)/sulfolane (TMS) with lithium bisfluorosulfonimide (LiTFSI) showed high ionic conductivity, oxygen solubility, remarkable stability, and better cycle life than only DMA-based or TMS-based electrolytes. In this work, we used classical molecular dynamics simulations to explore the structure and ionic dynamics of the DMA/TMS hybrid electrolytes at two compositions. We calculated radial, combined, and spatial distribution functions for the structural examination. These properties depict a minimal change in the electrolyte structure by increasing the DMA content in the electrolyte from 20 to 50% by volume. We used the diffusive regimes from mean square displacements for diffusion coefficient calculations. Ionic conductivities calculated using the Green-Kubo equation have an acceptable agreement with the experimental values, whereas the Nernst-Einstein relation is found insufficient to explain the ionic transport. The relatively lower value of the ion-cage lifetime of electrolyte components with 50% DMA shows their faster dynamics. Moreover, we present the new physical insight by focusing on ion-pair and ion-cage formation and their correlation with ionic conductivity. The atomic-level understanding through this work may assist in designing electrolytes for aprotic Li-O2 cells.

6.
J Phys Chem A ; 127(1): 160-168, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36594604

ABSTRACT

We report the atomistic and electronic details of the mechanistic pathway of the oxygen-oxygen bond formation catalyzed by a copper-2,2'-bipyridine complex. Density functional theory-based molecular dynamics simulations and enhanced sampling methods were employed for this study. The thermodynamics and electronic structure of the oxygen-oxygen bond formation are presented in this study by considering the cis-bishydroxo, [CuIII(bpy)(OH)2]+, and cis-(hydroxo)oxo, [CuIV(bpy)(OH)(═O)]+, complexes as active catalysts. In the cis-bishydroxo complex, the hydroxide transfer requires a higher kinetic barrier than the proton transfer process. In the case of [CuIV(bpy)(OH)(═O)]+, the proton transfer requires a higher free energy than the hydroxide one. The peroxide bond formation is thermodynamically favorable for the [CuIV(bpy)(OH)(═O)]+ complex compared with the other. The hydroxide ion is transferred to one of the Cu-OH moieties, and the proton is transferred to the solvent. The free energy barrier for this migration is higher than that for the former transfer. From the analysis of molecular orbitals, it is found that the electron density is primarily present on the water molecules near the active sites in the highest occupied molecular orbital (HOMO) state and lowest unoccupied molecular orbital (LUMO) of the ligands. Natural bond orbital (NBO) analysis reveals the electron transfer process during the oxygen-oxygen bond formation. The σ*Cu(dxz)-O(p) orbitals are involved in the oxygen-oxygen bond formation. During the bond formation, three-electron two-centered (3e--2C) bonds are observed in [CuIII(bpy)(OH)2]+ during the transfer of the hydroxide before the formation of the oxygen-oxygen bond.

7.
J Phys Chem B ; 127(1): 236-248, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36575973

ABSTRACT

The molecular dynamics simulations of a "water-in-salt" electrolyte, lithium bis(trifluoromethyl sulfonyl) imide (LiNTf2), with a varying concentration range of 3 to 20 m were performed to establish a direct connection between a dynamic property like the ion-cage lifetime with the short-range vibrational stretching frequency shift of the used probe, HOD. The properties reported here are compared to that obtained from experiments performed at the same concentrations. The time-series wavelet transform was adopted as a preferable mathematical tool for calculating the instantaneous fluctuating frequencies of the probe O-D stretch mode and the concentration-dependent vibrational stretch spectral signature based on the variable functions associated with a particular chemical bond derived from classical molecular dynamics trajectories. The decay time constants of frequency fluctuations and the lifetime of the ion cage (τIC) were estimated as a function of salt concentration. Herein, we emphasize the correlation between the slowest time constant (τ3) of the decay of O-D stretch frequency fluctuations and the timescales associated with the lifetime of ion cages (τIC). The results exhibit that the existing relationships were also concentration-dependent. Therefore, this study highlights the connection between the ionic motions that regulate the overall system dynamics with the short-range vibrational frequency shift of the used probe, which was used similar to experiments. It also provides an understanding of the interionic interactions and the dynamical and spectral properties of the electrolytic mixtures. We establish a direct correlation between short-range frequency profile and localized ion-cage lifetime, which can fill the gap of understanding between viscosity, vibrational frequency, and ion-cage dynamics of electrolytes.


Subject(s)
Sodium Chloride , Water , Water/chemistry , Hydrogen Bonding , Ions , Vibration
8.
Phys Chem Chem Phys ; 24(47): 29004-29013, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36420963

ABSTRACT

We explore the water dissociation process of graphene hybridized with a Co-bipyridine complex through first principles molecular dynamics simulations. We compute the free energies of the three main steps of the water dissociation process catalyzed by this hybrid catalyst. During the oxygen-oxygen bond formation, the transfer of the proton to the cis-OH of the cobalt complex is the rate determining step. The formation of the oxygen-oxygen bond leads to the peroxide complex, which is converted to the superoxide complex through the proton-coupled electron transfer (PCET) process. The formed superoxide complex is the rate-determining intermediate from which the oxygen molecule releases. The electronic properties of each state of the process were examined through Lowdin and Mulliken population analyses, local density of states (LDOS), and Wannier center analysis. The detailed electronic analysis reveals that the graphene sheet takes electronic density from the complex during the oxygen-oxygen bond formation. During the PCET process, the sheet shares the electron density with the complex, which stabilizes the superoxide complex. The Wannier center analysis provides evidence of the variation in the oxidation states of the metal center.

9.
J Phys Chem B ; 126(43): 8838-8850, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36264223

ABSTRACT

Classical molecular dynamics simulations were performed to assess an atomistic interpretation of the ion-probe structural interactions in two typical ionic liquids (ILs), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIm][NTf2] and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [BDimIm][NTf2] through computational ultrafast spectroscopy. The nitrile stretching vibrations of the thiocyanate anion, [SCN]-, serve as the local mode of the ultrafast system dynamics within the imidazolium-based ionic liquid environment. The wavelet transform of classical trajectories determines the time-varying fluctuating frequencies and the stretch spectral signatures of SCN- in the normalized distribution. However, computational modeling of the two-dimensional (2D) spectra from the wavelet-derived vibrational frequencies yields time evolution of the local molecular structure along with the varied time-dependent dynamics of the spectral diffusion process. We calculated the frequency-frequency correlation functions (FFCFs), time correlations associated with the ion-pair and -cage dynamics, and mean square displacements as a function of time, depicting diffusive dynamics. The calculated results based on the pair correlation functions and the distribution of atomic density suggest that the hydrogen and methylated carbon at the two-position of the imidazolium ring of [BMIm] and [BDimIm] cations, respectively, strongly interact with the probe through the N of the thiocyanate anion rather than the S atom. The center-of-mass center-of-mass (COM-COM) cation-probe radial distribution functions (RDFs) in conjunction with the site-specific structural analysis further reveal well-structured interactions of the thiocyanate ion and [BMIm]+ cation rather than the [BDimIm] cation. In contrast, the anion-probe COM-COM RDFs depict weak interactive associations within the vibrational probe [SCN]- and [NTf2]- ions. Methylation at the two-position of the imidazolium ring predicts slower structural reorganization and breaking and reformation dynamics of the ion pairs and cages within the ionic liquid framework.

10.
Chemphyschem ; 23(23): e202200497, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35965410

ABSTRACT

We performed classical molecular dynamics simulations to monitor the structural interactions and ultrafast dynamical and spectral response in the protic ionic liquid, ethylammonium nitrate (EAN) and water using the nitrile stretching mode of thiocyanate ion (SCN- ) as the vibrational probe. The normalized frequency distribution of the nitrile stretch in SCN- attains an asymmetric shape in EAN, indicating the existence of more than one hydrogen-bonding environment in EAN. Further, we computed the 2D IR spectrum from classical trajectories, applying the response function formalism. Spectral diffusion dynamics in EAN undergo an initial rattling of the SCN- inside the local ion-cage occurring at a timescale of 0.10 ps, followed by the breakup of the ion-cage activating molecular diffusion at 7.86 ps timescale. In contrast, the dynamics of structural reorganization occur at a timescale of 0.58 ps in H2 O. Hence, the time dependence of the frequency-frequency correlation function decay hints at the local molecular structure and ultrafast ion dynamics of the SCN- probe. The loss of frequency correlation read from the peak shape changes in the 2D correlation spectrum as a function of waiting time is faster in H2 O than in EAN due to the enhanced structural ordering and higher viscosity of the latter. We provide an atomic-level interpretation of the solvation environment around SCN- in EAN and water, which indicates multiple ensembles of the hydrogen bond network in EAN.

11.
J Phys Chem B ; 126(29): 5523-5533, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35833870

ABSTRACT

We have monitored the impacts of an increment in the alkyl chain length of the imidazolium-based tetrafluoroborate ionic liquids on the local deuteroxyl probe modes of interest. For this study, we have taken 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIm][BF4], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIm][BF4], 1-octyl-3-methylimidazolium tetrafluoroborate [OMIm][BF4], and 1-decyl-3-methylimidazolium tetrafluoroborate [DMIm][BF4] ionic liquid solutions with 5% HOD in H2O as the vibrational reporter of the associated ultrafast system dynamics. Classical molecular dynamics (MD) simulations were employed to determine molecular structure and dynamic properties, while the spectral profiles were derived by applying the wavelet analysis of classical trajectories. Spatial distribution functions reveal the heterogeneity within the molecular structures of the ionic liquids (ILs) with varying alkyl chain lengths. The intense position of the spectral peak, the frequency corresponding to the shoulder peak, and the spectral linewidth of the O-D stretch distribution are not influenced by the increment in the cationic chain length. In addition, the ionic liquid (IL) [BMIm][BF4] exhibits a notable trend; the dynamic timescales are longer than the other studied systems. Therefore, we have performed the Voronoi decomposition analysis of the ionic and the polar-apolar domains, symmetrically increasing the length of alkyl chains on the IL cations. Domain analysis reveals structural microheterogeneity; the anions form discrete domains, and the ionic liquid constituting cations form continuous domains irrespective of the alkyl chain length on the imidazolium cations. Therefore, this computational ultrafast spectroscopy study aids in forming a molecular-level picture of the ionic liquid cations and anions in the liquid phase, providing a detailed interpretation of the spectral properties of the probe stretching vibrations.


Subject(s)
Ionic Liquids , Anions , Cations , Ionic Liquids/chemistry , Vibration , Water/chemistry
12.
J Phys Chem A ; 126(31): 5134-5147, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35900106

ABSTRACT

We employed density functional theory (DFT)-based molecular dynamics simulations to explore the structure, dynamics, and spectral properties of the protic ionic entity trimethylammonium chloride (TMACl). Structural investigations include calculating the site-site radial distribution functions (RDFs), the distribution of constituent cations and anions in three-dimensional space, and combined distribution functions of the hydrogen-bonded pair RDF versus angle, revealing the structural characteristics of the ionic solvation and the intermolecular interactions within ions. Further, we determined the instantaneous vibrational stretching frequencies of the intrinsic N-H stretch probe modes by applying the time-series wavelet method. The associated ionic dynamics within the protic ionic compound were investigated by calculating the time-evolution of the fluctuating frequencies and the frequency-time correlation functions (FFCFs). The time scale related to the local structural relaxation process and the average hydrogen bond lifetime, ion cage dynamics, and mean squared displacement were investigated. The faster decay component of the FFCFs, depicting the intermolecular motion of intact hydrogen bonds in TMACl, is 0.07 ps for the Perdew-Burke-Ernzerhof (PBE)-based simulation and 0.06 ps for the PBE-D2 representation. The slower time scale of the longer picosecond decay time component of PBE and PBE-D2 representations are 3.13 and 2.87 ps, respectively. These picosecond time scales represent more significant fluctuations of the hydrogen-bonding partners in the ionic entity and hydrogen-bond jump events accompanied by large angular jumps. The longest picosecond time scales represent structural relaxation, including large angular jumps and ion-pair dynamics. Also, ion cage lifetimes correlate with the slowest time scale of the associated dynamics of vibrational spectral diffusion despite the type of DFT functional. This study benchmarks DFT treatments of the exchange-correlation functional with and without the van der Waals (vdW) dispersion correction scheme. The inclusion of vdW interactions to the PBE functional represents a less structured state of the ionic entity and faster dynamics of the molecular motions relative to the one predicted by the PBE system. All the results illustrate the necessity of accurately describing the Coulomb interactions, vdW dispersive interactive forces, and localized hydrogen bonds required to sustain the energetic balance in this ionic salt.

13.
Dalton Trans ; 51(31): 11899-11908, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35876181

ABSTRACT

In this study, we explore the water oxidation process with the help of density functional theory. The formation of an oxygen-oxygen bond is crucial in the water oxidation process. Here, we report the formation of the oxygen-oxygen bond by the N5-coordinate oxoiron species with a higher oxidation state of FeIV and FeV. This bond formation is studied through the nucleophilic addition of water molecules and the transfer of the oxygen atom from meta-chloroperbenzoic acid (mCPBA). Our study reveals that the oxygen-oxygen bond formation by reacting mCPBA with FeVO requires less activation barrier (13.7 kcal mol-1) than the other three pathways. This bond formation by the oxygen atom transfer (OAT) pathway is more favorable than that achieved by the hydrogen atom transfer (HAT) pathway. In both cases, the oxygen-oxygen bond formation occurs by interacting the σ*dz2-2pz molecular orbital of the iron-oxo intermediate with the 2px orbital of the oxygen atom. From this study, we understand that the oxygen-oxygen bond formation by FeIVO with the OAT process is also feasible (16 kcal mol-1), suggesting that FeVO may not always be required for the water oxidation process by non-heme N5-oxoiron. After the oxygen-oxygen bond formation, the release of the dioxygen molecule occurs with the addition of the water molecule. The release of dioxygen requires a barrier of 7.0 kcal mol-1. The oxygen-oxygen bond formation is found to be the rate-determining step.


Subject(s)
Hydrogen , Oxygen , Hydrogen/chemistry , Iron/chemistry , Oxidation-Reduction , Oxygen/chemistry , Water
14.
J Phys Chem A ; 126(21): 3301-3310, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35593706

ABSTRACT

We report the mechanistic details of the water oxidation process by the complex, [CoII(bpbH2)Cl2], where bpbH2 = N, N'-bis(2'-pyridinecarboxamide)-1,2-benzene. An experimental study reported the complex as the efficient catalyst for the water oxidation process. We performed density functional theory calculations at the M06-L level and first-principles molecular dynamics simulations to study the catalytic nature of the complex. We investigated the energetics of the total catalytic cycle, which combines the oxygen-oxygen bond formation, proton-coupled electron transfer (PCET) steps, and release of oxygen molecule. The formed peroxide and superoxide intermediates in the catalytic cycle were characterized with the help of the Mulliken spin density parameters. Mulliken spin densities of the metal-oxo bond reveal that the triplet state of CoV═O has a double-bond nature, but the quintet state of the complex has a radical nature (CoIV-O•-). In an alternative way, the deprotonation of the amide groups of the ligand is also considered. The deprotonation and formation of higher oxidation metal-oxo intermediates are also possible. In addition to this, we have considered the effect of phosphate buffer on water nucleophilic addition. The oxygen-oxygen bond formation is favorable by the catalyst with the deprotonated form of the ligand, with the addition of water as the nucleophile. In the oxidation process, the C═O bonds of the ligand transfer the electron density to nitrogen atoms, stabilizing the higher order oxo, peroxide, and superoxide bonds. The oxygen-oxygen bond formation is the rate-determining step in the overall water oxidation process. This bond was further investigated using first-principles molecular dynamics at the PBE-D2 level. The dynamics of proton, hydroxide ion, and the nature of the ligand structure on the oxygen-oxygen bond were examined. We find that the oxygen molecule is released from the superoxide complex with the addition of water molecules.

15.
J Org Chem ; 87(5): 2204-2221, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35143206

ABSTRACT

This article describes the development of a new aliphatic nitrile-template-directed remote meta-selective C-H olefin functionalization reaction of arenes. Remarkably, unlike the previous reports, this process is feasible at room temperature and enabled the formation of products with excellent regioselectivity. The present protocol encompasses a broad spectrum of substituted dihydrocinnamic acids and olefins, producing meta-C-H olefinated products (up to 96% yield). In addition, the efficacy of the present method has been showcased by the synthesis of various drug analogues (e.g., cholesterol, estrone, ibuprofen, and naproxen). Significantly, the robustness of meta-olefination was also demonstrated by gram-scale synthesis. The new nitrile-based meta-directing template, in particular, could be easily synthesized in two steps and recycled under mild conditions.


Subject(s)
Alkenes , Nitriles , Catalysis , Temperature
16.
J Phys Chem A ; 126(8): 1321-1328, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35172100

ABSTRACT

We performed first principles simulations to explore the water reduction process of the cobalt complex [CoII(bpbH2)Cl2], where bpbH2 = N,N'-bis(2'-pyridine carboxamide)-1,2-benzene. We considered the sequence steps of electron reduction followed by the proton addition process to observe the hydrogen evolution process. An experimental study of the catalyst showed that the increase in the acetic acid concentration triggers catalytic current and reduction of Co(II) to Co(I), and protonation occurred, yielding a Co(III)-H intermediate. Therefore, we used water and acetic acid as the proton sources. We compare the proton transfer kinetics from both the water and acetic acid. The reduction potentials and proton transfer kinetics from water or acetic acid to the reaction center were studied in a DMF solvent through the implicit solvent model. The first proton transfer from the acetic acid is more favorable, forming a CoIII-H complex and further reducing to CoII-H. The second proton transfer from water to the CoII-H moiety requires less free energy than acetic acid and is the rate-limiting step. The nature of the reduction process is also examined through the charge analysis, which reveals that the ligand becomes softer due to the C═O groups.

17.
Phys Chem Chem Phys ; 24(4): 2582-2591, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35029266

ABSTRACT

Black phosphorus (BP) is unique among 2D materials due to its anisotropic puckered structure. It has been used as a multifunctional catalyst for various purposes. In this study, we performed first principles molecular dynamics simulations to understand the water-splitting reaction on a bi-layer BP surface. We focused on the site-specific aqueous reactivity of the buckled surface. A difference in the axis-dependent reactivity is observed owing to edge defects and exposed sites. Thus, we believe that BP edges, which significantly affect the interfacial water or organic solvent molecules, must exhibit very different edge-dependent reactivity. Experiments suggested the increasing catalytic efficiency of undisturbed BP in the order bulk, few-layered BP, and BP quantum dots. We choose three active sites to investigate the mechanistic details of the OER: the zigzag (ZZ), armchair (AC), and bulk sites. This study will provide insight into the enhanced catalytic activity when more edges are exposed as the active surface. We hope to clarify the reactive pathway in an aqueous solution supported by bi-layer BP by exploring the two different mechanisms for forming the OOH* complex. We explore and report two mechanisms: a simple push-pull reaction for oxygen-oxygen bond formation, the nucleophilic attack by formed OH- and an attack by a water molecule. The free energy barriers procured for mechanism 1 taking place at the zigzag, armchair, and bulk sites are 7.59 ± 0.33, 9.04 ± 0.01, and 12.80 ± 0.09 kcal mol-1, respectively. For mechanism 2 the free energy barriers are 7.62 ± 0.11, 9.15 ± 0.16, and 11.63 ± 0.11 kcal mol-1 for the ZZ, AC, and bulk sites. The interlink between both the mechanisms is established concerning the reported free energy barriers for OOH* formation. The ZZ site is found to lower the activation barrier for the rate-determining step, followed by the AC and bulk.

18.
J Phys Chem B ; 125(42): 11697-11708, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34664957

ABSTRACT

The hybrid heterostructure of the tri-s-triazine form of graphitic carbon nitride (g-C3N4), a stable two-dimensional material, results from intricate layer formation with graphene. In this material, g-C3N4, an amphiphilic material, stabilizes Pickering emulsions as an emulsifier and can effectively disperse graphene. Due to the various technological applications of the hybrid nanosheets in an aqueous environment, it is essential to study the interaction of water molecules with graphene and g-C3N4 (Gr/g-C3N4)-combined heterostructure. Although few studies have been performed signifying the water orientation in the interfacial layer, we find that there is a lack of detailed studies using various dynamical and structural properties of the interfacial water molecules. The interface of the Gr/g-C3N4 hybrid structure, one of the rarely found amphiphilic interfaces (on the g-C3N3 side), is appropriate for exploring the water affinity due to the availability of heterogeneous interfacial aqueous interactions. We adopted classical molecular dynamics simulations using two models for water molecules to study the structure and dynamics of an aqueous interface. We have correlated the structural properties to dynamics and spectral properties to understand the overall behavior of the amphiphilic interface. Our results branch into two significant hydrogen bond (HB) properties in HB count and HB strength among the water molecules in the different layers. The HB counts in the different layers of water are correlated using the average distance distribution (PrO4), tetrahedral order parameters, HB donor/acceptor count, and total HBs per water molecule. A conspicuous difference is found in the HB count and related dynamics of the system. The HB lifetime and diffusion coefficient hint at the equivalent strength of HBs in the different layers. All the findings conclude that the amphiphilicity of the Gr/g-C3N4 interface can help in understanding various interfacial physical and chemical processes.


Subject(s)
Graphite , Hydrogen Bonding , Molecular Dynamics Simulation , Water
19.
J Phys Chem B ; 125(37): 10551-10561, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34516128

ABSTRACT

The electrolytes diluted with fluorinated solvents show promising properties toward better battery technology than existing ones. The transport of Li ions in these fluorinated electrolytes is essential to access the performance of a battery. It is believed that the transport of the Li ion in these electrolytes occurs through polar solvents in the matrix of nonpolar solvent molecules. The atomistic details of this mechanism are yet to be proved using the dynamics of these mixtures. In this study, we performed classical molecular dynamics simulations at various temperatures to probe this mechanism through the structure and dynamics of electrolytes at the atomic level. Here, we have shown that the polar fluorinated solvents assist the Li-ion transport in a region of nonpolar solvent. Highly polar molecules also solvate the Li ion at a lower temperature. The nonpolar solvent solvates the Li ion weakly as compared to others. The calculated values of the ionic conductivity from the Green-Kubo relation provide a better match than that from an experimental conductivity meter. Furthermore, we probed the heterogeneity in the dynamics of the electrolytes by calculating the non-Gaussian parameter. We also show that the transport mechanism of the Li ion in diluted concentrated electrolytes is different than a few of the other reported electrolytes. We have also calculated the ion-pair and ion-cage lifetimes to see the most and least lived ion/ion-solvent pairs. The mechanism given from the present study may help to design the fluorinated electrolytes for Li-ion batteries.

20.
J Phys Chem A ; 125(29): 6461-6473, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34282907

ABSTRACT

The mononuclear complexes ([(bztpen)Cu] (BF4)2 (bztpen = N-benzyl-N,N',N'-tris (pyridin-2-yl methyl ethylenediamine))) and ([(dbzbpen)Cu(OH2)] (BF4)2 (dbzbpen = N,N'-dibenzyl-N,N'-bis(pyridin-2-ylmethyl) ethylenediamine)) have been reported as water oxidation catalysts in basic medium (pH = 11.5). We explore the O2 evolution process catalyzed by these copper catalysts with various ligands (L) by applying the first-principles molecular dynamics simulations. First, the oxidation of catalysts to the metal-oxo intermediates [LCu(O)]2+ occurs through the proton-coupled electron transfer (PCET) process. These intermediates are involved in the oxygen-oxygen bond formation through the water-nucleophilic addition process. Here, we have considered two types of oxygen-oxygen bond formation. The first one is the transfer of the hydroxide of the water molecule to the Cu═O moiety; the proton transfer to the solvent leads to the formation of the peroxide complex ([LCu(OOH)]+). The other is the formation of the hydrogen peroxide complex ([LCu(HOOH)]2+) by the transfer of proton and hydroxide of the water molecule to the metal-oxo intermediate. The formation of the peroxide complex requires less activation free energy than hydrogen peroxide formation for both catalysts. We found two transition states in the well-tempered metadynamics simulations: one for proton transfer and another for hydroxide transfer. In both cases, the proton transfer requires higher free energy. Following the formation of the oxygen-oxygen bond, we study the release of the dioxygen molecule. The formed peroxide and hydrogen peroxide complexes are converted into the superoxide complex ([LCu(OO)]2+) through the transfer of proton, electron, and PCET processes. The superoxide complex releases an oxygen molecule upon the addition of a water molecule. The free energy of activation for the release of the dioxygen molecule is lesser than that of the oxygen-oxygen bond formation. When we observe the entire water oxidation process, the oxygen-oxygen bond formation is the rate-determining step. We calculated the rates of reaction by using the Eyring equation and found them to be close to the experimental values.

SELECTION OF CITATIONS
SEARCH DETAIL
...