Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 204(4): e0057121, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35343794

ABSTRACT

In Escherichia coli, three isoforms of the essential translation initiation factor IF2 (IF2-1, IF2-2, and IF2-3) are generated from separate in-frame initiation codons in infB. The isoforms have earlier been suggested to additionally participate in DNA damage repair and replication restart. It is also known that the proteins RecA and RecBCD are needed for repair of DNA double-strand breaks (DSBs) in E. coli. Here, we show that strains lacking IF2-1 are profoundly sensitive to two-ended DSBs in DNA generated by radiomimetic agents phleomycin or bleomycin, or by endonuclease I-SceI. However, these strains remained tolerant to other DSB-generating genotoxic agents or perturbations to which recA and recBC mutants remained sensitive, such as to mitomycin C, type-2 DNA topoisomerase inhibitors, or DSB caused by palindrome cleavage behind a replication fork. Data from genome-wide copy number analyses following I-SceI cleavage at a single chromosomal locus suggested that, in a strain lacking IF2-1, the magnitude of recombination-dependent replication through replication restart mechanisms is largely preserved but the extent of DNA resection around the DSB site is reduced. We propose that in the absence of IF2-1 it is the synapsis of a RecA nucleoprotein filament to its homologous target that is weakened, which in turn leads to a specific failure in assembly of Ter-to-oriC directed replisomes needed for consummation of two-ended DSB repair. IMPORTANCE Double-strand breaks (DSBs) in DNA are major threats to genome integrity. In Escherichia coli, DSBs are repaired by RecA- and RecBCD-mediated homologous recombination (HR). This study demonstrates a critical role for an isoform (IF2-1) of the translation initiation factor IF2 in the repair of two-ended DSBs in E. coli (that can be generated by ionizing radiation, certain DNA-damaging chemicals, or endonuclease action). It is proposed that IF2-1 acts to facilitate the function of RecA in the synapsis between a pair of DNA molecules during HR.


Subject(s)
DNA Breaks, Double-Stranded , Escherichia coli , DNA/metabolism , DNA Repair , DNA Replication , Escherichia coli/genetics , Escherichia coli/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
2.
J Bacteriol ; 204(4): e0056921, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35343793

ABSTRACT

Homologous recombination (HR) is critically important for chromosomal replication, as well as DNA damage repair in all life forms. In Escherichia coli, the process of HR comprises (i) two parallel presynaptic pathways that are mediated, respectively, by proteins RecB/C/D and RecF/O/R/Q; (ii) a synaptic step mediated by RecA that leads to generation of Holliday junctions (HJs); and (iii) postsynaptic steps mediated sequentially by HJ-acting proteins RuvA/B/C followed by proteins PriA/B/C of replication restart. Combined loss of RuvA/B/C and a DNA helicase UvrD is synthetically lethal, which is attributed to toxicity caused by accumulated HJs since viability in these double mutant strains is restored by removal of the presynaptic or synaptic proteins RecF/O/R/Q or RecA, respectively. Here we show that, as in ΔuvrD strains, ruv mutations confer synthetic lethality in cells deficient for transcription termination factor Rho, and that loss of RecFORQ presynaptic pathway proteins or of RecA suppresses this lethality. Furthermore, loss of IF2-1 (which is one of three isoforms [IF2-1, IF2-2, and IF2-3] of the essential translation initiation factor IF2 that are synthesized from three in-frame initiation codons in infB) also suppressed uvrD-ruv and rho-ruv lethalities, whereas deficiency of IF2-2 and IF2-3 exacerbated the synthetic defects. Our results suggest that Rho deficiency is associated with an increased frequency of HR that is mediated by the RecFORQ pathway along with RecA. They also lend support to earlier reports that IF2 isoforms participate in DNA transactions, and we propose that they do so by modulation of HR functions. IMPORTANCE The process of homologous recombination (HR) is important for maintenance of genome integrity in all cells. In Escherichia coli, the RecA protein is a critical participant in HR, which acts at a step common to and downstream of two HR pathways mediated by the RecBCD and RecFOR proteins, respectively. In this study, an isoform (IF2-1) of the translation initiation factor IF2 has been identified as a novel facilitator of RecA's function in vivo during HR.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Bacterial Proteins/metabolism , DNA Helicases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Homologous Recombination , Humans , Mutation , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Protein Isoforms/genetics
3.
Nucleic Acids Res ; 46(7): 3400-3411, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29474582

ABSTRACT

Transcription termination by Rho is essential for viability in various bacteria, including some major pathogens. Since Rho acts by targeting nascent RNAs that are not simultaneously translated, it also regulates antisense transcription. Here we show that RNase H-deficient mutants of Escherichia coli exhibit heightened sensitivity to the Rho inhibitor bicyclomycin, and that Rho deficiency provokes increased formation of RNA-DNA hybrids (R-loops) which is ameliorated by expression of the phage T4-derived R-loop helicase UvsW. We also provide evidence that in Rho-deficient cells, R-loop formation blocks subsequent rounds of antisense transcription at more than 500 chromosomal loci. Hence these antisense transcripts, which can extend beyond 10 kb in their length, are only detected when Rho function is absent or compromised and the UvsW helicase is concurrently expressed. Thus the potential for antisense transcription in bacteria is much greater than hitherto recognized; and the cells are able to retain viability even when nearly one-quarter of their total non-rRNA abundance is accounted for by antisense transcripts, provided that R-loop formation from them is curtailed.


Subject(s)
Genome, Bacterial/genetics , Rho Factor/genetics , Transcription Termination, Genetic , Transcription, Genetic , Bacteriophage T4/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chromosomes/genetics , DNA Helicases/genetics , DNA Replication/genetics , DNA, Antisense/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Genes, rRNA/genetics , Genome, Bacterial/drug effects , Rho Factor/antagonists & inhibitors , Ribonuclease H/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...