Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmacogn Mag ; 13(Suppl 1): S56-S62, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28479727

ABSTRACT

BACKGROUND: Hepatitis is a health problem affecting millions of people worldwide and it is the major risk factor for liver cirrhosis. In India, many plants are used to treat hepatitis. But little is known about the effects of (-)-epicatechin a bioactive compound of Phyllanthus niruri (PN) in hepatitis rats. OBJECTIVE: The present study was designed to explore the antioxidant property of (-)-epicatechin isolated from PN in D-Galactosamine (D-GalN) induced hepatitis rats. MATERIALS AND METHODS: The rats are divided into five groups as per the experimental design. (-)-Epicatchin pretreatment was given to the hepatitis rats for 21 days and biochemical analysis was carried out. The hepatic antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), glutathione S-transferase (GST), reduced glutathione (GSH), and malondialdehyde (MDA) and serum markers aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin, and bilirubin are estimated. RESULTS: All the antioxidant enzymes activities and albumin levels are depleted in hepatitic rats. Whereas GST, ALP, AST, ALT activities and MDA, and bilirubin levels are elevated in hepatitis rats, (-)-epicatechin pretreatment increased all the antioxidant enzymes and decreased the GST, ALP, AST, ALT, and MDA levels in hepatitis rats. However, histopatholoigic studies also proves that (-)-epicatechin pretreatment decreased the tissue damage in hepatitis condition. This is the first report on the antioxidant enzymes and hepatoprotective effect of (-)-epicatechin in hepatitis rats. CONCLUSION: From this study, we conclude that (-)-epicatechin treatment decreased the oxidative damage in hepatitis rats. SUMMARY: The present study was carried out to know the impact of (-)-epicatechin on antioxidant enzymes activities in hepatitis rats. From this study, we found that the antioxidant enzymes SOD, CAT, GPx, GR, GSH depleted in hepatitis rats and increased with (-)-epicatechin in hepatitis rats.MDA levels increased in hepatitis rats and decreased with (-)-epicatechin in hepatitis rats. From this study, we concluded that (-)-epicatechin will be useful to treat hepatotoxicity in rats. Abbreviations used:Phyllanthus niruri (PN), D-Galactosamine (D-GalN), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), glutathione s transferase (GST), reduced glutathione (GSH) and malondialdehyde (MDA) aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), World Health Organisation (WHO), Indian Institute of Science (IISc), Nicotinamide adenine dinucleotide phosphate (NADPH), thiobarbituric acid reactive substances (TBARS).

2.
Pharmacogn Mag ; 13(Suppl 1): S69-S75, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28479729

ABSTRACT

BACKGROUND: Alcohol-induced hyperlipidemia is positively correlated with cardiovascular diseases. Several herbal extracts have been reported to protect the cardiac injury and suppress the hyperlipidemia. However, the effect of ginger extracts on alcohol-induced hyperlipidemia and associated myocardial damage remains unclear. OBJECTIVE: This study investigated the cardio-protective properties of ginger ethanolic extract (Gt) against alcohol-induced myocardial damage, and further distinguished the association between hyperlipidemia and occurrence of myocardial damage in rats. MATERIALS AND METHODS: Twenty four Wistar male albino rats (250 ± 20 g) were divided into four groups including, Normal control (NC) (0.9% NaCl), Ginger treated (Gt) (200 mg/Kg b.w.), Alcohol treated (At) (20% of 6g/kg b.w. alcohol), and Alcohol along with Ginger treatment (At+Gt). In this study, lipid profiles such as fatty acids, triglycerides, total cholesterol, phospholipids, low density lipoprotein and high density lipoproteins, and cardiac biomarkers, including LDH, AST, CK-MB, cTn-T and cTn-I were examined in rats. Furthermore, histopathological studies were also conducted. RESULTS: We found that alcohol-induced myocardial damage was associated with increased lipid profile except high density lipoprotein in alcohol treated (20%, 6g/kg b.w.) rats compared with control. Ginger treatment significantly reduced the alcohol-induced lipid profiles except high density lipoproteins. Furthermore, elevated cardiac biomarkers activity with alcohol intoxication was substantially suppressed by ginger treatment. In addition, ginger treatment for 7-weeks significantly minimized the alcohol-induced myocardial damage. CONCLUSION: Our results concluded that ginger could protect alcohol-induced myocardial damage by suppression of hyperlipidemia and cardiac biomarkers. SUMMARY: Ginger extract could alleviate the myocardial injury partially due to the suppression of circulating FFAs and TG levels.Increased circulating cholesterol, LDL and phospholipids with alcohol intake were substantially suppressed by ginger treatmentAlcohol, induced an increase in cardiac damage biomarkers, CK-MB, cTn-T and cTn-I were remarkably suppressed by ginger treatmentPerformed histopathological studies by transmission electron microscopy and light microscopy shows additional convincing evidence on ginger cardio-protective effects. The drastic changes were rehabilitated in cardiac tissue by ginger treatment may be it acts as a good antioxidant and possessing hypolipidemic activity.Collectively, our findings confirm hypothesis that ginger has cardio protective potential through suppression of hyperlipidemia, preserving the tissue damage bio markers, cardiac biomarkers in plasma and preservation of histoarchitecture of myocytes. Abbreviations used: Gt: Ginger Ethanolic Extract; NC: Normal Control; At: Alcohol treated; MI: Myocardial Infarction.

3.
Food Chem Toxicol ; 49(4): 893-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21184796

ABSTRACT

The aim of the present study was to investigate the effect of ginger on oxidative stress markers in the mitochondrial fractions of cerebral cortex (CC), cerebellum (CB), hippocampus (HC) and hypothalamus (HT) of diabetic rats. Diabetes exacerbates neuronal injury induced by hyperglycemia mediated oxidative damage. A marked decrease in anti-oxidant marker enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH) and increase in malondialdehyde (MDA) was observed in the diabetic rats. Decreased activities of anti-oxidant enzymes in diabetic rats were augmented on oral administration of ginger. Moreover, ginger administration depleted the MDA level, which was earlier increased in the diabetic rats. These results suggest that ginger exhibit a neuroprotective effect by accelerating brain anti-oxidant defense mechanisms and down regulating the MDA levels to the normal levels in the diabetic rats. Thus, ginger may be used as therapeutic agent in preventing complications in diabetic patients.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Experimental/pathology , Neuroprotective Agents/pharmacology , Zingiber officinale/chemistry , Animals , Blood Glucose/analysis , Body Weight/drug effects , Lipid Peroxidation/drug effects , Rats , Rats, Wistar , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...