Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801279

ABSTRACT

Given the recent invasion of Scirtothrips dorsalis Hood in North America, there is limited information regarding their distribution and population dynamics in cultivated small fruit crops. Therefore, we investigated the spatial and temporal distribution of S. dorsalis and their natural enemies in commercially produced strawberry fields in Florida. During 2 consecutive strawberry production seasons, 4 and 6 geographically separated strawberry fields were sampled and were divided into grids with 30-40 sampling points per field. At each sampling point, 4-5 leaf and flower samples were collected, and sticky traps were deployed. We quantified the occurrence of S. dorsalis as well as potential natural enemies, including Orius spp., Geocoris spp., and other predators such as long-legged flies. During both years, most of the S. dorsalis and natural enemies were found on field borders, and counts progressively diminished further into the interiors of plots and away from field edges. Cluster and outlier analysis revealed that S. dorsalis formed statistically significant clusters and that these "hot spots" remained in the same general locations throughout the season. There was a strong relationship between the occurrence of natural enemies and the presence of S. dorsalis, but the number of natural enemies was generally low compared to S. dorsalis. Our results indicate that targeting field borders for chemical control or planting strawberries away from natural areas containing potential alternative hosts for thrips may be an effective strategy for reducing agricultural inputs; however, future field assessments are needed to determine if these methods could replace the treatment of entire fields.

2.
J Environ Manage ; 345: 118877, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37708642

ABSTRACT

Urbanization and land use change are leading causes of declines in pollinator abundance and diversity. However, researchers in different regions of the world have found that some pollinators can thrive in urban landscapes, depending on land use practices, environmental conditions, and species traits. Residential landscapes constitute a significant portion of urban green space and thus, residents' adoption of landscape practices to promote pollinators can play a central role in addressing the global pollinator challenge. Yet, although residents' willingness and intention appear strong, adoption of pollinator-friendly gardening remains low. The present study - guided by the Diffusion of Innovations theory - aimed to build empirical understanding by surveying 1598 [State] residents on their experiences and perceptions related to pollinator-friendly gardening to determine the most salient barriers and opportunities to engagement. Key findings suggest making the practice more widely observable and reducing perceived complexity in learning to do the practice are critical to promoting adoption. This demonstrates, in practical terms, that: (1) targeted efforts to build residents' actionable knowledge about pollinator-friendly gardening may significantly reduce uncertainty and boost the likelihood of adoption; and (2) examples of active pollinator gardens need to be more widely showcased and popularized (e.g., through experiential or virtual demonstrations). We also found most residents living in homeowner associations (HOAs) believed HOA policies on pollinator-friendly gardening were restrictive or the residents were unsure whether they are allowed to practice pollinator-friendly gardening. Given these perceptions strongly associated with residents' low intent to engage in pollinator-friendly gardening, a major opportunity exists to diffuse the practice and increase adoption by working with HOAs and community leaders to become promoters of - rather than barriers to - pollinator-friendly gardening.


Subject(s)
Gardening , Gardens , Diffusion , Intention , Knowledge
3.
PeerJ ; 10: e14377, 2022.
Article in English | MEDLINE | ID: mdl-36389407

ABSTRACT

In the age of changing fire regimes, land managers often rely on prescribed burns to promote high diversity of herbaceous plants. Yet, little is known about how the timing of prescribed burns interacts with other ecological factors to maintain biodiversity while restoring fire-adapted ecosystems. We examined how timing of prescribed burns and removal of a dominant, early successional weedy plant yankeeweed (Eupatorium compositifolium) affect flower density and pollinator activity in an early-successional longleaf pine savanna restored from a timber plantation. During the first year of this study, plots received seasonal burn treatments, including unburned control, winter-dry, spring, and summer-wet season burns. During the second year of the study, data on flowers and pollinators were sampled across all plots. In the third year, these seasonal burn treatments were again applied to plots, and data were again collected on flowers and pollinators. In each burn treatment plot, we manipulated the presence of yankeeweed, including one control subplot (no removal) in which yankeeweed was not manipulated and one removal subplot in which yankeeweed was removed, and flowers and pollinators were measured. During the year between burns, flower density was highest in the summer-wet season burn treatment, significantly higher than in the unburned control, while pollinator activity was highest in the summer-wet and spring season burn treatments, significantly higher than the unburned control. During the year in which plots were burned again, flower density was highest in the spring season burn treatment, and pollinators most frequent in both spring and winter-dry season burn treatments, significantly higher than the unburned control. Removing yankeeweed enhanced pollinator activity but only in the year between fire applications. We conclude that prescribed burning enhances floral resource availability and pollinator activity, but the magnitude of these effects depends on when fires are applied. Additionally, removal of yankeeweed can enhance pollinator activity during years between prescribed burns.


Subject(s)
Ecosystem , Grassland , Seasons , Biodiversity , Plants , Flowers
4.
Ecology ; 103(5): e3658, 2022 05.
Article in English | MEDLINE | ID: mdl-35129842

ABSTRACT

Changes in climate can alter the phenology of organisms, potentially decoupling partners within mutualisms. Previous studies have shown that plant and pollinator phenologies are shifting over time, but these shifts have primarily been documented for generalists and within small geographic regions, and the specific climatic cues regulating these shifts are not well understood. We examined phenological shifts in a specialist pollinator and its host plant species over a 117-year study period using a digitized data set of more than 4000 unique collection records. We assessed how climatic cues regulate these organisms' phenologies using PRISM weather data associated with each record. We tested the hypothesis that rates of phenological change would be greater at northern latitudes. We found that the phenology of the specialist bee pollinator Habropoda laboriosa is changing over time, but at different rates across its range. Specifically, phenology is advancing to a greater degree in more northern populations, with increasing phenological advances of 0.04 days/year with each degree of latitude, and with a delay in phenology in more southern populations. In contrast, only one species in the host plant genus Vaccinium is experiencing phenological change over time. For this plant, rates of change are also variable across latitudes, but in a pattern opposite that of the bee; while phenology is advancing across its range, rates of advance are highest in more southern populations, with decreasing phenological advances of 0.01 days/year with each degree of latitude. The phenologies of both the bee and three of four Vaccinium spp. were regulated primarily by spring temperature, with phenologies overall advancing with increasing temperature, and with the strongest responses shown by the bee in northern populations. Our study provides partial support for the hypothesis that phenologies advance most at northern latitudes, but demonstrates that pollinators and plants do not adhere similarly to this prediction. Additionally, we illustrate the potential for phenological mismatch between a specialist pollinator and its host plants by showing that plants and pollinators are advancing their phenologies at different rates across space and time and with differing responses to changing climatic cues.


Subject(s)
Climate Change , Plants , Animals , Bees , Seasons , Symbiosis , Temperature
5.
J Econ Entomol ; 114(4): 1441-1451, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34106276

ABSTRACT

Pollinator-dependent crops rely on the activity of managed and wild pollinators. While farm management and surrounding landscape can influence wild pollinator contributions, managed pollinator contributions may be primarily driven by their stocking densities, though this is not well studied across crops. We selected 20 southern highbush blueberry farms along two independent gradients of honey bee Apis mellifera L. (Hymenoptera: Apidae) stocking density (~1-11 hives/acre) and bumble bee Bombus impatiens Cresson (Hymenoptera: Apidae) stocking density (0 - 3 colonies/acre) ensuring that stocking densities were not correlated with farm or landscape attributes. Across farms, we observed managed and wild bee visitation rates, and measured yield estimates. Farms with greater bumble bee stocking densities had higher bumble bee visitation rates and yield estimates, but farms with higher honey bee stocking densities only received higher honey bee visitation rates at the end of bloom and did not have higher yield estimates. The main wild pollinator, the southeastern blueberry bee Habropoda laboriosa (Fabricius) (Hymenoptera: Apidae), showed higher visitation rates on organic farms and in late bloom. In general, higher visitation rates by honey bees, bumble bees, and H. laboriosa were correlated with higher yields. Our results suggest that yields are limited by bee visitation rates, and that within the stocking density ranges studied, increasing managed bumble bees, but not honey bees, increases their visitation rates. While H. laboriosa had the greatest effect on yield estimates, its activity appears to be limited by both a phenological mismatch with crop bloom and farm management.


Subject(s)
Blueberry Plants , Hymenoptera , Agriculture , Animals , Bees , Farms , Pollination
6.
J Econ Entomol ; 112(1): 40-48, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30346534

ABSTRACT

The benefits of insect pollination to crop yields depend on genetic and environmental factors including plant self-fertility, pollinator visitation rates, and pollinator efficacy. While many crops benefit from insect pollination, such variation in pollinator benefits across both plant cultivars and growing regions is not well documented. In this study, across three states in the northern Great Plains, United States, from 2016 to 2017, we evaluated the pollinator-mediated yield increases for 10 varieties of confection sunflowers, Helianthus annuus L. (Asterales: Asteraceae), a plant that is naturally pollinator-dependent but was bred for self-fertility. We additionally measured pollinator visitation rates and compared per-visit seed set across pollinator taxa in order to determine the most efficacious sunflower pollinators. Across all locations and hybrids, insect pollination increased sunflower yields by 45%, which is a regional economic value of over $40 million and a national value of over $56 million. There was, however, some variation in the extent of pollinator benefits across locations and plant genotypes, and such variation was significantly related to pollinator visitation rates, further highlighting the value of pollinators for confection sunflowers. Female Andrena helianthi Robertson (Hymenoptera: Andrenidae) and Melissodes spp. (Hymenoptera: Apidae) were the most common and effective pollinators, while other bees including managed honey bees (Hymenoptera: Halictidae), Apis mellifera L. (Hymenoptera: Apidae), small-bodied sweat bees (Hymenoptera: Halictidae), bumble bees Bombus spp. (Hymenoptera: Apidae), and male bees were either infrequent or less effective on a per-visit basis. Our results illustrate that wild bees, in particular the sunflower specialists A. helianthi and Melissodes spp., provide significant economic benefits to confection sunflower production.


Subject(s)
Bees , Behavior, Animal , Crops, Agricultural/economics , Helianthus , Pollination , Animals , Biomass , Female , Male
7.
Front Plant Sci ; 9: 812, 2018.
Article in English | MEDLINE | ID: mdl-29967631

ABSTRACT

Floral nectar and other reward facilitate crop pollination, and in so doing, increase the amount and breadth of food available for humans. Though abundance and diversity of pollinators (particularly bees) have declined over the past several decades, a concomitant increase in reliance on pollinators presents a challenge to food production. Development of crop varieties with specific nectar or nectar-related traits to attract and retain pollinating insects is an appealing strategy to help address needs of agriculture and pollinators for several reasons. First, many crops have specific traits which have been identified to enhance crop-pollinator interactions. Also, an improved understanding of mechanisms that govern nectar-related traits suggest simplified phenotyping and breeding are possible. Finally, the use of nectar-related traits to enhance crop pollination should complement other measures promoting pollinators and will not limit options for crop production or require any changes by growers (other than planting varieties that are more attractive or rewarding to pollinators). In this article, we review the rationale for improving crop-pollinator interactions, the effects of specific plant traits on pollinator species, and use cultivated sunflowers as a case study. Recent research in sunflower has (i) associated variation in bee visitation with specific floral traits, (ii) quantified benefits of pollinators to hybrid yields, and (iii) used genetic resources in sunflower and other plants to find markers associated with key floral traits. Forthcoming work to increase pollinator rewards should enable sunflower to act as a model for using nectar-related traits to enhance crop-pollinator interactions.

8.
J Evol Biol ; 31(7): 944-956, 2018 07.
Article in English | MEDLINE | ID: mdl-29499106

ABSTRACT

Structures such as nests and burrows are an essential component of many organisms' life-cycle and require a complex sequence of behaviours. Because behaviours can vary consistently among individuals and be correlated with one another, we hypothesized that these structures would (1) show evidence of among-individual variation, (2) be organized into distinct functional modules and (3) show evidence of trade-offs among functional modules due to limits on energy budgets. We tested these hypotheses using the alfalfa leafcutting bee, Megachile rotundata, a solitary bee and important crop pollinator. Megachile rotundata constructs complex nests by gathering leaf materials to form a linear series of cells in pre-existing cavities. In this study, we examined variation in the following nest construction traits: reproduction (number of cells per nest and nest length), nest protection (cap length and number of leaves per cap), cell construction (cell size and number of leaves per cell) and cell provisioning (cell mass) from 60 nests. We found a general decline in investment in cell construction and provisioning with each new cell built. In addition, we found evidence for both repeatability and plasticity in cell provisioning with little evidence for trade-offs among traits. Instead, most traits were positively, albeit weakly, correlated (r ~ 0.15), and traits were loosely organized into covarying modules. Our results show that individual differences in nest construction are detectable at a level similar to that of other behavioural traits and that these traits are only weakly integrated. This suggests that nest components are capable of independent evolutionary trajectories.


Subject(s)
Bees/physiology , Nesting Behavior/physiology , Animals , Bees/genetics , Female , Models, Biological , Pollen
9.
PLoS One ; 12(12): e0189268, 2017.
Article in English | MEDLINE | ID: mdl-29220412

ABSTRACT

Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their potential impact on wild bees.


Subject(s)
Bees , Animals , Plants , Pollination
10.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Article in English | MEDLINE | ID: mdl-28488295

ABSTRACT

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Subject(s)
Agriculture/methods , Arthropods , Biodiversity , Ecosystem , Animals
11.
J Econ Entomol ; 104(1): 115-24, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21404848

ABSTRACT

Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.


Subject(s)
Aphids , Pest Control, Biological , Salicylates , Animals , Food Chain , Population Density , Population Growth , Glycine max/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...