Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 391: 122046, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32145642

ABSTRACT

This review summarises the current state of knowledge on the biodegradation and fate of the gasoline ether oxygenate ethyl tert-butyl ether (ETBE) in soil and groundwater. Microorganisms have been identified in soil and groundwater with the ability to degrade ETBE aerobically as a carbon and energy source, or via cometabolism using alkanes as growth substrates. Aerobic biodegradation of ETBE initially occurs via hydroxylation of the ethoxy carbon by a monooxygenase enzyme, with subsequent formation of intermediates which include acetaldehyde, tert-butyl acetate (TBAc), tert-butyl alcohol (TBA), 2-hydroxy-2-methyl-1-propanol (MHP) and 2-hydroxyisobutyric acid (2-HIBA). Slow cell growth and low biomass yields on ETBE are believed to result from the ether structure and slow degradation kinetics, with potential limitations on ETBE metabolism. Genes known to facilitate transformation of ETBE include ethB (within the ethRABCD cluster), encoding a cytochrome P450 monooxygenase, and alkB-encoding alkane hydroxylases. Other genes have been identified in microorganisms but their activity and specificity towards ETBE remains poorly characterised. Microorganisms and pathways supporting anaerobic biodegradation of ETBE have not been identified, although this potential has been demonstrated in limited field and laboratory studies. The presence of co-contaminants (other ether oxygenates, hydrocarbons and organic compounds) in soil and groundwater may limit aerobic biodegradation of ETBE by preferential metabolism and consumption of available dissolved oxygen or enhance ETBE biodegradation through cometabolism. Both ETBE-degrading microorganisms and alkane-oxidising bacteria have been characterised, with potential for use in bioaugmentation and biostimulation of ETBE degradation in groundwater.


Subject(s)
Ethyl Ethers/metabolism , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism , Aerobiosis , Anaerobiosis , Bacteria/metabolism , Ethyl Ethers/chemistry , Water Pollutants, Chemical/chemistry
2.
J Hazard Mater ; 388: 122022, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31962211

ABSTRACT

Aerobic biodegradation of ethyl tert butyl ether (ETBE) in a gasoline-impacted aquifer was investigated in laboratory microcosms containing groundwater and aquifer material from ETBE-impacted and non-impacted locations amended with either ETBE, or ETBE plus methyl tert butyl ether (MTBE). As sole substrate, ETBE was biodegraded (maximum rate of 0.54 day-1) without a lag in ETBE-impacted microcosms but with a lag of up to 66 days in non-impacted microcosms (maximum rate of 0.38 day-1). As co-substrate, ETBE was biodegraded preferentially (maximum rate of 0.25 and 0.99 day-1 in non-impacted and impacted microcosms, respectively) before MTBE (maximum rate of 0.24 and 0.36 day-1 in non-impacted and impacted microcosms, respectively). Further addition of ETBE and MTBE reduced lags and increased biodegradation rates. ethB gene copy numbers increased significantly (>100 fold) after exposure to ETBE, while overall cell numbers remained constant, suggesting that ethB-containing microorganisms come to dominate the microbial communities. Deep sequencing of 16S rRNA genes identified members of the Comamonadaceae family that increased in relative abundance upon exposure to ETBE. This study demonstrates the potential for ETBE biodegradation within the unsaturated and saturated zone, and that ETBE biodegrading capability is rapidly developed and maintained within the aquifer microbial community over extended timescales.


Subject(s)
Ethyl Ethers/metabolism , Groundwater/microbiology , Microbiota , Water Pollutants, Chemical/metabolism , Aerobiosis , Biodegradation, Environmental , Gasoline , Methyl Ethers/metabolism , Microbiota/genetics , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...