Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Xray Sci Technol ; 24(1): 23-41, 2016.
Article in English | MEDLINE | ID: mdl-26890907

ABSTRACT

OBJECTIVE: The aim of this study is to investigate the validity of using the Multiple Projection Algorithm (MPA) for Breast Tomosynthesis (BT) using real projection images acquired with phantoms at a clinical setting. METHODS: The CIRS-BR3D phantom with ranging thicknesses between 3 cm and 6 cm was used for all image quality evaluations. Five sets of measurements were acquired, each comprised of a 2D mammographic image followed by a set of 25 projections within an arc length of 50°. A reconstruction algorithm based on the MPA was adapted for partial isocentric rotation using a stationary detector. For reference purposes, a Back Projection (BP) algorithm was also developed for this geometry. The performance of the algorithms was evaluated, in combination with pre-filtering of the projections, in comparative studies that involved also a comparison between tomosynthesis slices and 2D mammograms. RESULTS: Evaluation of tomosynthesis slices reconstructed with BP and MPA showed close performance for the two algorithms with no considerable differences in feature detection, size and appearance of the background tissue with the MPA running faster the overall process. Pre-filtering of the projections, led to better BT images compared to non-filtering. Increased thickness resulted in limited detection of the features of interest, especially the smaller sized ones. In these cases, the filtered BT slices allowed improved visualization due to removed superimposed tissue compared to the 2D images. The different breast-like slab arrangements in phantoms of the same thickness demonstrated a slight influence on the quality of reconstructed features. CONCLUSIONS: The MPA which had been applied previously to reconstruct tomograms from projections acquired at synchrotron facilities, is a time efficient algorithm, and is fully compliant with and can be successfully used in BT clinical systems. Compared to 2D mammography, BT shows advantage in visualizing features of small size and for increased phantom thickness or features within a dense background with superimposed structures.


Subject(s)
Algorithms , Breast/diagnostic imaging , Mammography/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging
2.
Phys Med Biol ; 59(16): 4681-96, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25082791

ABSTRACT

The aim of this study is to investigate the impact on image quality of using monochromatic beams for lower dose breast tomosynthesis (BT). For this purpose, modeling and simulation of BT and mammography imaging processes have been performed using two x-ray beams: one at 28 kVp and a monochromatic one at 19 keV at different entrance surface air kerma ranging between 0.16 and 5.5 mGy. Two 4 cm thick computational breast models, in a compressed state, were used: one simple homogeneous and one heterogeneous based on CT breast images, with compositions of 50% glandular-50% adipose and 40% glandular-60% adipose tissues by weight, respectively. Modeled lesions, representing masses and calcifications, were inserted within these breast phantoms. X-ray transport in the breast models was simulated with previously developed and validated Monte Carlo application. Results showed that, for the same incident photon fluence, the use of the monochromatic beam in BT resulted in higher image quality compared to the one using polychromatic acquisition, especially in terms of contrast. For the homogenous phantom, the improvement ranged between 15% and 22% for calcifications and masses, respectively, while for the heterogeneous one this improvement was in the order of 33% for the masses and 17% for the calcifications. For different exposures, comparable image quality in terms of signal-difference-to-noise ratio and higher contrast for all features was obtained when using a monochromatic 19 keV beam at a lower mean glandular dose, compared to the polychromatic one. Monochromatic images also provide better detail and, in combination with BT, can lead to substantial improvement in visualization of features, and particularly better edge detection of low-contrast masses.


Subject(s)
Breast , Mammography/methods , Monte Carlo Method , Breast/cytology , Feasibility Studies , Female , Humans , Phantoms, Imaging , Radiation Dosage , Signal-To-Noise Ratio
3.
Med Phys ; 39(9): 5621-34, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22957628

ABSTRACT

PURPOSE: This study investigates the image quality of tomosynthesis slices obtained from several acquisition sets with synchrotron radiation using a breast phantom incorporating details that mimic various breast lesions, in a heterogeneous background. METHODS: A complex Breast phantom (MAMMAX) with a heterogeneous background and thickness that corresponds to 4.5 cm compressed breast with an average composition of 50% adipose and 50% glandular tissue was assembled using two commercial phantoms. Projection images using acquisition arcs of 24°, 32°, 40°, 48°, and 56° at incident energy of 17 keV were obtained from the phantom with the synchrotron radiation for medical physics beamline at ELETTRA Synchrotron Light Laboratory. The total mean glandular dose was set equal to 2.5 mGy. Tomograms were reconstructed with simple multiple projection algorithm (MPA) and filtered MPA. In the latter case, a median filter, a sinc filter, and a combination of those two filters were applied on the experimental data prior to MPA reconstruction. Visual inspection, contrast to noise ratio, contrast, and artifact spread function were the figures of merit used in the evaluation of the visualisation and detection of low- and high-contrast breast features, as a function of the reconstruction algorithm and acquisition arc. To study the benefits of using monochromatic beams, single projection images at incident energies ranging from 14 to 27 keV were acquired with the same phantom and weighted to synthesize polychromatic images at a typical incident x-ray spectrum with W target. RESULTS: Filters were optimised to reconstruct features with different attenuation characteristics and dimensions. In the case of 6 mm low-contrast details, improved visual appearance as well as higher contrast to noise ratio and contrast values were observed for the two filtered MPA algorithms that exploit the sinc filter. These features are better visualized at extended arc length, as the acquisition arc of 56° with 15 projection images demonstrates the highest image reconstruction quality. For microcalcifications, filtered MPA implemented with a combination of median and sinc filters indicates better feature appearance due to efficient suppression of background tissue. The image quality of these features is less sensitive to the acquisition arc. Calcifications with size ranging from 170 to 500 µm, like the ones presently studied, are well identified and visualized for all arcs used. The comparison of single projection images obtained under different beam conditions showed that the use of monochromatic beam can produce an image with higher contrast and contrast to noise ratio compared to an image corresponding to a polychromatic beam even when the latter is acquired with double incident exposure. CONCLUSIONS: Filter optimization in respect to the type of feature characteristics is important before the reconstruction. The MPA combined with median and sinc filters results in improved reconstruction of microcalcifications and low-contrast features. The latter are better visualized at extended arc length, while microcalcifications are less sensitive to this acquisition parameter. Use of monochromatic beams may result in tomographic images with higher contrast acquired at lower incident exposures.


Subject(s)
Mammography/instrumentation , Synchrotrons , Image Processing, Computer-Assisted , Phantoms, Imaging , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL