Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 38(2): e9660, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38124166

ABSTRACT

RATIONALE: The thiosuccinimide linker is widely used in the synthesis of bioconjugates. However, it is susceptible to hydrolysis and is transformed into its hydrolyzed and/or the isobaric thiazine forms, the latter of which is a fairly common product in a conjugate that contains a cysteinyl peptide. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS) are useful for differentiating these isobaric species. METHODS: Four cross-linked peptides with thiosuccinimide linkers were synthesized. Analogs with linkers that were transformed into thiazine and/or the hydrolyzed thiosuccinimide linkers were then synthesized by incubating the samples at neutral or basic pH. All the cross-linked peptides were purified using RP-HPLC (reversed-phase high-performance liquid chromatography) and differentiated using MALDI-MS, MALDI-MS/MS, and ultraviolet photodissociation. RESULTS: A cysteinyl peptide-containing conjugate, the thiosuccinimide form, was largely transformed into the hydrolyzed or thiazine forms after incubation at neutral or basic pH. MALDI-MS allowed the three forms to be differentiated: the thiosuccinimide and its hydrolysis product yielded two constituent peptides after reductive cleavage between the Cys and succinimide moieties; no fragment ions were produced from the thiazine form. In addition, MALDI-MS/MS of the thiosuccinimide form yielded two pairs of complementary fragment ions via 1,4-elimination: Cys-SH and maleimide, and dehydro-alanine and thiosuccinimide, which are different from those produced via reductive cleavage in MALDI-MS. The thiazine form yielded fragment ions resulting from the cleavage of the newly formed amide bond in the linker that resulted from thiazine formation. CONCLUSIONS: The thiosuccinimide (but not thiazine) form of the cross-linked peptide yielded individual constituent peptides using MALDI-MS and MALDI-MS/MS, showing specific 1,4-elimination for the thiosuccinimide form and cleavage at the newly formed peptide bond via transcyclization for the thiazine form.


Subject(s)
Tandem Mass Spectrometry , Thiazines , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Peptides/chemistry , Ions , Maleimides
2.
Pathogens ; 11(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36297237

ABSTRACT

We aim to provide a harmonized view of the factors that affect the survival and promote the spread of R. microplus in the Neotropics, approaching its different facets of biology, ecology, distribution, and control. We review the interactions among environmental niche, landscape fragmentation, vegetal coverage (abiotic traits), and the biotic aspects of its ecology (abundance of domesticated or wild competent hosts), proposing emerging areas of research. We emphasize a holistic view integrating an economically and ecologically sustainable control of infestations and transmitted pathogens by R. microplus in the Neotropics. Examples of research link the trends of climate, the composition of the community of hosts, the landscape features, and a tailored management based on ecological grounds. Our view is that factors driving the spread of R. microplus are complex and deeply interrelated, something that has been seldom considered in control strategies. The effects of climate may affect the dynamics of wildlife or the landscape composition, promoting new patterns of seasonal activity of the tick, or its spread into currently free areas. In this paper we encourage a One Health approach highlighting the main aspects governing the components of the tick's life cycle and its interactions with livestock and wild animals.

3.
Vet Microbiol ; 152(3-4): 328-37, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21680114

ABSTRACT

World Health Organization has a great concern about the spreading of avian influenza virus H5N1. To counteract its massive spread, poultry vaccination is highly recommended together with biosecurity measures. In our study, a recombinant vaccine candidate based on the fusion of extracellular segments of hemagglutinin (HA) H5 of avian influenza virus and chicken CD154 (HACD) is tested with the aim of enhancing humoral and cellular immune responses in chickens. Protein expression was carried out by transducing several mammalian cell lines with recombinant adenoviral vectors. HACD purification was assessed by three distinct purification protocols: immunoaffinity chromatography by elution at acidic pH or with a chaotropic agent and size exclusion chromatography. Humoral and cellular immune responses were measured using the hemagglutination inhibition assay and the semiquantitative real time PCR, respectively. The results showed that humoral response against HACD was significantly higher than the obtained with HA alone after booster (P<0.01, P<0.05). From HACD molecules purified by distinct protocols, only the obtained by size exclusion chromatography generated hemagglutinationin-inhibition activity. IFN-γ levels indicated that cellular immune response was significantly higher with HACD, in its pure or impure form, compared to its counterpart HA (P<0.01). These data demonstrate that HACD is able to significantly enhance humoral and cellular immune responses against HA antigen, which make this fusion protein a promising subunit vaccine candidate against H5N1 virus outbreaks.


Subject(s)
CD40 Ligand/metabolism , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza in Birds/immunology , Influenza in Birds/prevention & control , Animals , Antibodies, Viral/analysis , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Hemagglutination Inhibition Tests , Hemagglutinins/genetics , Hemagglutinins/immunology , Humans , Immunity, Cellular , Influenza Vaccines/genetics , Influenza in Birds/virology , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...