Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 98(12)2022 11 22.
Article in English | MEDLINE | ID: mdl-36302145

ABSTRACT

Microbial diversity can restrict the invasion and impact of alien microbes into soils via resource competition. However, this theory has not been tested on various microbial invaders with different ecological traits, particularly spore-forming bacteria. Here we investigated the survival capacity of two introduced spore-forming bacteria, Bacillus mycoides (BM) and B. pumillus (BP) and their impact on the soil microbiome niches with low and high diversity. We hypothesized that higher soil bacterial diversity would better restrict Bacillus survival via resource competition, and the invasion would alter the resident bacterial communities' niches only if inoculants do not escape competition with the soil community (e.g. through sporulation). Our findings showed that BP could not survive as viable propagules and transiently impacted the bacterial communities' niche structure. This may be linked to its poor resource usage and low growth rate. Having better resource use capacities, BM better survived in soil, though its survival was weakly related to the remaining resources left for them by the soil community. BM strongly affected the community niche structure, ultimately in less diverse communities. These findings show that the inverse diversity-invasibility relationship can be valid for some spore-forming bacteria, but only when they have sufficient resource use capacity.


Subject(s)
Agricultural Inoculants , Bacillus , Soil , Soil Microbiology , Bacteria , Spores
2.
Front Microbiol ; 13: 703183, 2022.
Article in English | MEDLINE | ID: mdl-35865927

ABSTRACT

Microbiomes are involved in most vital processes, such as immune response, detoxification, and digestion and are thereby elementary to organismal functioning and ultimately the host's fitness. In turn, the microbiome may be influenced by the host and by the host's environment. To understand microbiome dynamics during the process of adaptation to new resources, we performed an evolutionary experiment with the two-spotted spider mite, Tetranychus urticae. We generated genetically depleted strains of the two-spotted spider mite and reared them on their ancestral host plant and two novel host plants for approximately 12 generations. The use of genetically depleted strains reduced the magnitude of genetic adaptation of the spider mite host to the new resource and, hence, allowed for better detection of signals of adaptation via the microbiome. During the course of adaptation, we tested spider mite performance (number of eggs laid and longevity) and characterized the bacterial component of its microbiome (16S rRNA gene sequencing) to determine: (1) whether the bacterial communities were shaped by mite ancestry or plant environment and (2) whether the spider mites' performance and microbiome composition were related. We found that spider mite performance on the novel host plants was clearly correlated with microbiome composition. Because our results show that only little of the total variation in the microbiome can be explained by the properties of the host (spider mite) and the environment (plant species) we studied, we argue that the bacterial community within hosts could be valuable for understanding a species' performance on multiple resources.

3.
Methods Ecol Evol ; 11(8): 932-942, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32999708

ABSTRACT

Microbial evolution experiments provide a powerful tool to unravel the molecular basis of adaptive evolution but their outcomes can be difficult to interpret, unless the selective forces that are applied during the experiment are carefully controlled. In this respect, experimental evolution in continuous cultures provides advantages over commonly used sequential batch-culture protocols because continuous cultures allow for more accurate control over the induced selective environment. However, commercial continuous-culture systems are large and expensive, while available DIY continuous-culture systems are not versatile enough to allow for multiple sensors and rigorous stirring.We present a modular continuous-culture system that adopts the commonly used GL45 glass laboratory bottle as a bioreactor vessel. Our design offers three advantages: first, it is equipped with a large head plate, fitting two sensors and seven input/output ports, enabling the customization of the system for many running modes (chemostat, auxostat, etc.). Second, the bioreactor is small (25-250 ml), which makes it feasible to run many replicates in parallel. Third, bioreactor modules can be coupled by uni- or bi-directional flows to induce spatiotemporal variation in selection. These features result in a particularly flexible culturing platform that facilitates the investigation of a broad range of evolutionary and ecological questions.To illustrate the versatility of our culturing system, we outline two evolution experiments that impose a temporally or spatially variable regime of selection. The first experiment illustrates how controlled temporal variation in resource availability can be utilized to select for anticipatory switching. The second experiment illustrates a spatially structured morbidostat setup that is designed to probe epistatic interactions between adaptive mutations. Furthermore, we demonstrate how sensor data can be used to stabilize selection pressures or track evolutionary adaptation.Evolution experiments in which populations are exposed to controlled spatiotemporal variation, are essential to gain insight into the process of adaptation and the mechanisms that constrain evolution. Continuous-culture systems, like the one presented here, offer control over key environmental parameters and establish a well-defined regime of selection. As such, they create the opportunity to expose evolutionary constraints in the form of phenotypic trade-offs, contributing to a mechanistic understanding of adaptive evolution.

4.
Ecology ; 96(4): 915-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26230013

ABSTRACT

The roles of species richness, resource use, and resource availability are central to many hypotheses explaining the diversity-invasion phenomenon but are generally not investigated together. Here, we created a large diversity gradient of soil microbial communities by either assembling communities of pure bacterial strains or removing the diversity of a natural soil. Using data on the resource-use capacities of the soil communities and an invader that were gathered from 71 carbon sources, we quantified the niches available to both constituents by using the metrics community niche and remaining niche available to the invader. A strong positive relationship between species richness and community niche across both experiments indicated the presence of resource complementarity. Moreover, community niche and the remaining niche available to the invader predicted invader abundance well. This suggested that increased competition in communities of higher diversity limits community invasibility and underscored the importance of resource availability as a key mechanism through which diversity hinders invasions. As a proof of principle, we subjected selected invaded communities to a resource pulse, which progressively uncoupled the link between soil microbial diversity and invasion and allowed the invader to rebound after nearly being eliminated in some communities. Our results thus show that (1) resource competition suppresses invasion, (2) biodiversity increases resource competition and decreases invasion through niche preemption, and (3) resource pulses that cannot be fully used, even by diverse communities, are favorable to invasion.


Subject(s)
Bacteria/classification , Biodiversity , Soil Microbiology , Bacteria/metabolism , Galactose/metabolism
6.
Proc Natl Acad Sci U S A ; 109(4): 1159-64, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22232669

ABSTRACT

Natural ecosystems show variable resistance to invasion by alien species, and this resistance can relate to the species diversity in the system. In soil, microorganisms are key components that determine life support functions, but the functional redundancy in the microbiota of most soils has long been thought to overwhelm microbial diversity-function relationships. We here show an inverse relationship between soil microbial diversity and survival of the invading species Escherichia coli O157:H7, assessed by using the marked derivative strain T. The invader's fate in soil was determined in the presence of (i) differentially constructed culturable bacterial communities, and (ii) microbial communities established using a dilution-to-extinction approach. Both approaches revealed a negative correlation between the diversity of the soil microbiota and survival of the invader. The relationship could be explained by a decrease in the competitive ability of the invader in species-rich vs. species-poor bacterial communities, reflected in the amount of resources used and the rate of their consumption. Soil microbial diversity is a key factor that controls the extent to which bacterial invaders can establish.


Subject(s)
Biodiversity , Escherichia coli O157/growth & development , Introduced Species , Soil Microbiology , Colony Count, Microbial , Netherlands , Survival Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...