Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 259: 113862, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31884215

ABSTRACT

Plastics are crucial for our modern lifestyle and yet pose a major threat to our environment. Rising levels of microplastics (MP) in rivers and oceans are a big challenge for our economy and regulatory institutions as well as from a scientific point of view. Smaller microplastic particles, in particular, are especially hard to identify and even harder to quantify in environmental samples. Hence, we present a novel and inexpensive approach to quantify microplastics (MP) on a weight basis, relying on a thermoanalytical method. The Elemental Analysis combined with Overdetermined Equation Method (EA-OEM) was originally developed for determining the plastic content of refuse-derived fuels. It makes use of the distinct differences in the organic elemental composition (C, H, N, S, O) of plastics, biogenic and inorganic materials to calculate the (micro)plastic content on a detailed weight base. The study presented provides the first experimental results yielded from the application of the EA-OEM and two different laboratory approaches to the analysis of polyethylene (PE) and polypropylene (PP) MP content in industrial effluent samples from one source. In this way, it was possible to ensure that the polymer composition was known and the MP content therein (10-29%) could be derived. Further, the study reveals good MP recovery rates when applying the methodology to PE/PP-spiked samples.


Subject(s)
Environmental Monitoring , Industrial Waste , Microplastics , Wastewater , Water Pollutants, Chemical , Environmental Monitoring/methods , Industrial Waste/analysis , Microplastics/analysis , Oceans and Seas , Wastewater/chemistry , Water Pollutants, Chemical/analysis
2.
Waste Manag ; 73: 381-391, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29273540

ABSTRACT

An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450 °C to 1050 °C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450 °C, thermally treated MSWI fly ash pellets can be classified as non-hazardous waste. However, temperatures of at least 650 °C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850 °C, 950 °C or even 1050 °C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in the secondary fly ash. This metal enriched secondary fly ash might represent a potential raw material for metal recovery (e.g. via acidic leaching). Due to the high content of total dissolved solids observed in the leachate of thermally treated MSWI fly ash pellets, a wet extraction procedure is suggested to enable its safe disposal at non-hazardous waste landfills.


Subject(s)
Coal Ash , Incineration , Metals, Heavy/analysis , Solid Waste , Carbon , Hot Temperature , Particulate Matter , Refuse Disposal , Waste Disposal Facilities
3.
Waste Manag ; 58: 181-190, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27650632

ABSTRACT

As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition.


Subject(s)
Hazardous Waste , Waste Management/methods , Austria , Coal Ash , Incineration , Metals, Heavy/chemistry , Waste Management/instrumentation
4.
Chem Sci ; 6(1): 497-504, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-28936305

ABSTRACT

One-electron oxidation of two series of diaryldichalcogenides (C6F5E)2 (13a-c) and (2,6-Mes2C6H3E)2 (16a-c) was studied (E = S, Se, Te). The reaction of 13a and 13b with AsF5 and SbF5 gave rise to the formation of thermally unstable radical cations [(C6F5S)2]˙+ (14a) and [(C6F5Se)2]˙+ (14b) that were isolated as [Sb2F11]- and [As2F11]- salts, respectively. The reaction of 13c with AsF5 afforded only the product of a Te-C bond cleavage, namely the previously known dication [Te4]2+ that was isolated as [AsF6]- salt. The reaction of (2,6-Mes2C6H3E)2 (16a-c) with [NO][SbF6] provided the corresponding radical cations [(2,6-Mes2C6H3E)2]˙+ (17a-c; E = S, Se, Te) in the form of thermally stable [SbF6]- salts in nearly quantitative yields. The electronic and structural properties of these radical cations were probed by X-ray diffraction analysis, EPR spectroscopy, and density functional theory calculations and other methods.

5.
J Am Chem Soc ; 136(31): 10870-3, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25026100

ABSTRACT

The reaction of the intramolecularly coordinated diaryltellurium(IV) oxide (8-Me2NC10H6)2TeO with acetonitrile proceeds with oxygen transfer and gives rise to the formation of the novel zwitterionic diaryltelluronium(IV) acetimidate (8-Me2NC10H6)2TeNC(O)CH3 (1) in 57% yield. Hydrolysis of 1 with hydrochloric acid affords acetamide and the previously known diarylhydroxytelluronium(IV) chloride [(8-Me2NC10H6)2Te(OH)]Cl.

6.
Inorg Chem ; 51(22): 12395-406, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23134409

ABSTRACT

The homoleptic 1:1 Lewis pair (LP) complex [MesTe(TeMes2)]O3SCF3 (1) featuring the cation [MesTe(TeMes2)](+) (1a) was obtained by the reaction of Mes2Te with HO3SCF3. The reaction of 1 with Ph3E (E = P, As, Sb, Bi) proceeded with substitution of Mes2Te and provided the heteroleptic 1:1 LP complexes [MesTe(EPh3)]O3SCF3 (2, E = P; 3, E = As) and [MesTe(SbPh3)][Ph2Sb(O3SCF3)2] (4) featuring the cations [MesTe(EPh3)](+) (2a, E = P; 3a, E = As; 4a, E = Sb) and the anion [Ph2Sb(O3SCF3)2](-) (4b). In the reaction with Ph3Bi, the crude product contained the cation [MesTe(BiPh3)](+) (5a) and the anion [Ph2Bi(O3SCF3)2](-) (5b); however, the heteroleptic 1:1 LP complex [MesTe(BiPh3)][Ph2Bi(O3SCF3)2] (5) could not be isolated because of its limited stability. Instead, fractional crystallization furnished a large amount of Ph2BiO3SCF3 (6), which was also obtained by the reaction of Ph3Bi with HO3SCF3. The formation of the anions 4b and 5b involves a phenyl group migration from Ph3E (E = Sb, Bi) to the MesTe(+) cation and afforded MesTePh as the byproduct, which was identified in the mother liquor. The heteroleptic 1:1 LP complexes 2-4 were also obtained by the one-pot reaction of Mes2Te, Ph3E (E = P, As, Sb) and HO3SCF3. Compounds 1-4 and 6 were investigated by single-crystal X-ray diffraction. The molecular structures of 1a-4a were used for density functional theory calculations at the B3PW91/TZ level of theory and studied using natural bond order (NBO) analyses as well as real-space bonding descriptors derived from an atoms-in-molecules (AIM) analysis of the theoretically obtained electron density. Additionally, the electron localizability indicator (ELI-D) and the delocalization index are derived from the corresponding pair density.

SELECTION OF CITATIONS
SEARCH DETAIL
...