Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 63(4): 390-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-12802534

ABSTRACT

Lignolytic enzymes such as laccase have been difficult to over-express in an active form. This paper describes the expression, characterization, and application of a fungal laccase in maize seed. The transgenic seed contains immobilized and extractable laccase. Fifty ppm dry weight of aqueously extractable laccase was obtained, and the remaining solids contained a significant amount of immobilized laccase that was active. Although a portion of the extractable laccase was produced as inactive apoenzyme, laccase activity was recovered by treatment with copper and chloride. In addition to allowing the apoenzyme to regain activity, treatment with copper also provided a partial purification step by precipitating other endogenous corn proteins while leaving >90% of the laccase in solution. The data also demonstrate the application of maize-produced laccase as a polymerization agent. The apparent concentration of laccase in ground, defatted corn germ is approximately 0.20% of dry weight.


Subject(s)
Laccase/genetics , Laccase/isolation & purification , Polyporales/enzymology , Seeds/enzymology , Zea mays/genetics , Apoenzymes/isolation & purification , Apoenzymes/metabolism , Chlorides/metabolism , Copper/metabolism , Fungal Proteins/genetics , Laccase/biosynthesis , Lignin/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Polyporales/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Zea mays/enzymology
2.
Biotechnol Bioeng ; 65(3): 247-57, 1999 Nov 05.
Article in English | MEDLINE | ID: mdl-10486122

ABSTRACT

The microfiltration performance of a novel membrane module design with helically wound hollow fibers is compared with that obtained with a standard commercial-type crossflow module containing linear hollow fibers. Cell suspensions (yeast, E. coli, and mammalian cell cultures) commonly clarified in the biotechnology industry are used for this comparison. The effect of variables such as transmembrane pressure, particle suspension concentration, and feed flow rate on membrane performance is evaluated. Normalized permeation fluxes versus flow rate or Dean number behave according to a heat transfer correlation obtained with centrifugal instabilities of the Taylor type. The microfiltration performance of this new module design, which uses secondary flows in helical tubes, is significantly better than an equivalent current commercial crossflow module when filtering suspensions relevant to the biotechnology industry. Flux and capacity improvements of up to 3.2-fold (constant transmembrane pressure operation) and 3.9-fold (constant flux operation), respectively, were obtained with the helical module over those for the linear module.


Subject(s)
Biotechnology/instrumentation , Equipment Design , Filtration/instrumentation , Membranes, Artificial , Permeability , Pressure , Saccharomyces cerevisiae/cytology , Viscosity , Water
3.
Biotechnol Bioeng ; 48(4): 375-85, 1995 Nov 20.
Article in English | MEDLINE | ID: mdl-18623498

ABSTRACT

A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...