Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 28(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37836769

ABSTRACT

Endophytic fungi are a significant source of secondary metabolites, which are chemical compounds with biological activities. The present study emphasizes the first-time isolation and identification of such fungi and their pharmacological activities from the medicinal plant Cordia dichotoma, which is native to Jammu, India. The Shannon Wiener diversity index revealed a wide range of fungal endophytes in root (1.992), stem (1.645), and leaf (1.46) tissues. A total of 19 endophytic fungi belonging to nine different genera were isolated from this plant and the majority belonged to the Ascomycota phylum. ITS rRNA gene sequencing was used to identify the fungal strains and they were submitted in NCBI GenBank. The most potent fungal isolate Cladosporium cladosporioides OP870014 had strong antimicrobial, antioxidant, and anticancer activity against MCF-7, HCT-116, and PC-3 cancer cell lines. The LC-MS and GC-MS analyses of the ethyl acetate extract of C. cladosporioides were examined to identify the bioactive metabolites. The major compounds of the crude extract derived from C. cladosporioides OP870014, according to GC-MS, are spiculisporic acid; dibutyl phthalate; phenylethyl alcohol; cyclohexanone, 2,3,3-trimethyl-2-3-methylbutyl; pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl);2,5-piperazinedione,3,6-bis(2-methylpropyl); and heneicosane which possessed antimicrobial, anticancerous, and antioxidant activities. The findings revealed that C. dichotoma has the capacity to host a wide variety of fungal endophytes and that secondary metabolites from the endophytic fungus may be a source of alternative naturally occurring antimicrobial, antioxidant, and cytotoxic compounds.


Subject(s)
Anti-Infective Agents , Ascomycota , Cordia , Antioxidants/pharmacology , Antioxidants/metabolism , Endophytes/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Fungi/metabolism , Ascomycota/chemistry
2.
Braz. J. Pharm. Sci. (Online) ; 59: e19334, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439515

ABSTRACT

Abstract Present study analysed the therapeutic potential of traditionally acclaimed medicinal herb Nanorrhinum ramosissimum, using plant parts extracted with different solvents (10 mg/mL). Shoot extracts exhibited comparatively better antimicrobial properties, in comparison to root extracts. Total phenolic content was estimated, to ascertain its dependency on antioxidant properties of plant extracts. Antioxidant assay revealed promising results in comparison to IC50 value of standard ascorbic acid (52.2±0.07 µg/mL), for methanolic extracts of shoot (61.07±0.53 µg/mL and 64.33±0.33 µg/mL) and root (76.705±0.12 µg/mL and 89.73±0.28 µg/ mL) for in vivo and in vitro regenerants respectively. Correlation coefficient R2 values ranged between 0.90-0.95, indicating a positive correlation between phenolic contents and antioxidant activity. Plant extracts were also able to inhibit DNA oxidative damage again indicating their antioxidative potential. Antidiabetic potential was confirmed by alpha amylase inhibition assay where shoot methanolic extracts (invivo, in vitro) exhibited the best IC50 values (54.42±0.16 µg/mL, 66.09±0.12 µg/mL) in comparison to standard metformin (41.92±0.08 µg/mL). Ethanolic extracts of roots (in vitro, invivo) exhibited the relative IC50 values (88.97±0.32µg/mL,96.63±0.44 µg/mL) indicating that shoot parts had a better alpha amylase inhibition property; thus proving the herb's bioactive potential and its prospective therapeutic source for curing various ailments.


Subject(s)
Plants, Medicinal/adverse effects , Plant Extracts/analysis , Scrophulariaceae/classification , Antioxidants/pharmacology , In Vitro Techniques/methods , Hypoglycemic Agents/agonists
3.
3 Biotech ; 12(8): 158, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35814036

ABSTRACT

Diethyl sulphate-based mutagenesis was performed on fungal strain Tolypocladium inflatum MTCC-3538. Two mutant morphotypes MT1-3538 and MT2-3538 were selected for further chemo-profiling studies. LCMS/MS profiling of fungal crude extract confirmed that the wild-type and mutant strains (MT1-3538, MT2-3538) were competent to produce cyclosporine A. MT2-3538 produced 2.1 fold higher cyclosporine A in comparison to the wild type. Further, LCMS-based high throughput media optimization was performed for MT2-3538 in 20 different media combinations to increase cyclosporine A yield. On the basis of ion-intensity profiling, media combination consisting of Glucose 0.1 g/L; Peptone 0.005 g/L and Valine 0.005 g/L was selected and used for up-scaling purpose. Mutant MT2-3538 with optimized media combination increased cyclosporine yield 16 fold and could potentially be exploited for commercial outcomes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03219-x.

4.
Front Microbiol ; 13: 879386, 2022.
Article in English | MEDLINE | ID: mdl-35633730

ABSTRACT

Endophytic bacteria isolated from medicinal plants are crucial for the production of antimicrobial agents since they are capable of possessing bioactive compounds with diverse structures and activities. Cordia dichotoma, a plant of medicinal importance native to the Jammu region of India, was selected for the isolation and characterization of culturable endophytic bacteria and evaluation of their antimicrobial activities. Standardized surface sterilization methods were employed to isolate thirty-three phenotypically distinguishable endophytic bacteria from the root, stem, and leaf parts of the plant. Shannon Wiener diversity index clearly divulged diverse endophytes in roots (0.85), stem (0.61), and leaf (0.54) tissues. Physio-biochemical features of the isolates differentiated the distinct variations in their carbohydrate utilization profile and NaCl tolerance. The endophytes produced an array of enzymes, namely, catalase, oxidase, amylase, cellulase, nitrate reductase, and lipase. The bacterial isolates belong to the genera Bacillus, Pseudomonas, Paenibacillus, Acidomonas, Streptococcus, Ralstonia, Micrococcus, Staphylococcus, and Alcalignes predominantly. However, the antibiotic susceptibility pattern indicated that the isolates were mostly sensitive to erythromycin and streptomycin, while they were resistant to rifampicin, amoxicillin, and bacitracin. Interestingly, majority of the bacterial endophytes of C. dichotoma showed antimicrobial activity against Bacillus subtilis followed by Klebsiella pneumoniae. The 16S rRNA sequence of Bacillus thuringiensis has been deposited in the NCBI GenBank database under accession number OM320575. The major compounds of the crude extract derived from endophytic B. thuringiensis OM320575, according to the metabolic profile examination by GC-MS, are dibutyl phthalate, eicosane, tetrapentacontane, heneicosane, and hexadecane, which possessed antibacterial activities. In conclusion, results indicated the potential of C. dichotoma to host a plethora of bacterial endophytes that produce therapeutic bioactive metabolites.

5.
Life (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34833105

ABSTRACT

There is a unique microbial community in the female lower genital tract known as the vaginal microbiota, which varies in composition and density and provides significant benefits during pregnancy, reproductive cyclicity, healthy newborn delivery, protection from preterm birth, infections such as UTIs, bacterial vaginosis, and so on, and improves the efficacy of treatments for vaginal cancers. Methods: It is necessary to know how the vaginal microbiome is composed in order to make an accurate diagnosis of the diseases listed above. A microbiome's members are difficult to classify, and the way microbial communities function and influence host-pathogen interactions are difficult to understand. More and more metagenomic studies are able to unravel such complexities due to advances in high-throughput sequencing and bioinformatics. When it comes to vaginal microbiota research, we'll be looking at the use of modern techniques and strategies that can be used to investigate variations in vaginal microbiota in order to detect diseases earlier, better treat vaginal disorders, and boost women's health. Discussion: The discussed techniques and strategies may improve the treatment of vaginal disorders and may be beneficial for women's overall health.

6.
ACS Omega ; 6(25): 16266-16272, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34235296

ABSTRACT

Diethyl sulfate (DES)-based chemical mutagenesis was applied on different fungal strains with the aim of diversifying the secondary metabolites. The mutant strain (VRE-MT1) of Penicillium oxalicum was subjected to dereplication (LCMS-based) and isolation of natural products, resulting in obtaining 10 molecules of bioactive potential. Metabolites, viz. tuckolide, methylpenicinoline, 2-acetyl-3,5-dihydroxy-4,6-dimethylbenzeneacetic acid, penicillixanthone A, brefeldin A 7-ketone, and antibiotic FD 549, were observed for the first time from P. oxalicum. The results of antimicrobial activity reveal that the compounds N-[2-(4-hydroxyphenyl)ethenyl]formamide, methylpenicinoline, and penipanoid A have potent antibacterial activity against Bacillus subtilis (ATCC 6633) with minimum inhibitory concentration (MIC) values of 16, 64, and 16 µM, respectively, and the compounds N-[2-(4-hydroxyphenyl)ethenyl]formamide, methylpenicinoline, and penipanoid A were found active against Escherichia coli (ATCC 25922), with MIC values of 16, 64, and 16 µM, respectively. Also, the metabolites N-[2-(4-hydroxyphenyl)ethenyl]formamide and tuckolide showed effective antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid scavenging assays. The mutant VRE-MT1 was found to have 8.34 times higher quantity of N-[2-(4-hydroxyphenyl)ethenyl]formamide as compared to the mother strain. The DES-based mutagenesis strategy has been found to be a potent tool to diversify the secondary metabolites in fungi.

7.
3 Biotech ; 10(6): 256, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32432018

ABSTRACT

The effect of different elicitors [jasmonic acid, salicylic acid] and precursors [calcium pantothenate, cholesterol, sodium nitroprusside] on the stimulation of biomass and secondary metabolite production in suspension cultures of Bacopa monnieri was studied. Induction of primary callus cultures was successfully carried out on the Gamborg's B5 (B5) medium fortified with 2, 4-D (1.0 mg l-1) using Bacopa monnieri leaves as explants. The friable fine suspension cell culture was raised on parent B5 media without agar. The elicitation using different elicitors and precursors at varying concentrations was carried out over a period of 3, 6, 9, 15 days. Elicitor treated cultures showed marked increase in biomass and bacoside production around 6th-9th day (0.98 GI DW). In the present study, salicylic acid at 1.0 mg l-1 induced a maximum elicitation in bacoside content (6.58 mg g-1 DW). The present study provides favorable evidence on the potential of bacoside production using suspension cultures of B. monnieri. The study results also indicate the beneficial effects of elicitation on metabolite production in in vitro suspension cultures of B. monnieri plant known for its cognitive improving properties.

8.
Eng Life Sci ; 19(8): 584-590, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32625034

ABSTRACT

According to folklore, Bacopa monnieri commonly called as Brahmi is known for its cognitive enhancing properties. The plant is found abundantly in wetlands but the drug content (bacosides) is very low (0.2%), therefore, alternative biotechnological protocols are highly needed to supplement the constant source of this valuable plant material which produces stable amounts of bacosides. The present study was conducted to explore the application of different culture systems for cultivation of shoot biomass and maximization of biologically active bacoside biosynthesis in this medicinally important plant. Shoot cultures of Bacopa were cultivated in two different modified benchtop bioreactors: glass bottle bioreactor and balloon type bubble bioreactor and compared with those grown in traditional Erlenmeyer agitated flask. The shoots cultivated in the balloon type bubble bioreactor system showed excellent growth (growth index 796.47 ± 17.27 fresh weight and 395.55 ± 7.55 dry weight) as compared to glass bottle bioreactor system (growth index 488.17 ± 14.4 fresh weight and 327.79 ± 6.64 dry weight) and agitated flask (growth index 363.43 ± 11 fresh weight and 304.22 ± 6.76 dry weight). Furthermore, bacosides produced by shoot cultures cultivated in the balloon type bubble bioreactor (321.95 ± 17.14 mg/L) and glass bottle bioreactor (180.18 ± 6.25 mg/L) configurations were ∼2.78 fold and ∼1.55 fold higher than that recorded in agitated flask cultures (115.7 ± 3.84 mg/L). The balloon type bubble bioreactor system was found to be advantageous for enhancing B. monnieri shoot biomass and bacoside biosynthesis along with ensuring a successful protocol for continuous supply.

9.
Nat Prod Res ; 29(8): 745-9, 2015.
Article in English | MEDLINE | ID: mdl-25485652

ABSTRACT

The effect of different abiotic elicitors [jasmonic acid, copper sulphate (CuSO4) and salicyclic acid] at varying concentrations on the stimulation of biomass and bacoside production in in vitro Bacopa monnieri shoot culture was studied. A systematic study conducted over a period of 35 days indicated that the maximum bacoside production (6.74 mg g(-1) dry weight (DW)) was obtained after a lag of 7 days and thereafter, the content decreased gradually to again increase at 28 days (5.91 mg g(-1) DW). Therefore, elicitation experiments were carried out over a period of 3, 6 and 9 days. The shoot cultures treated with 45 mg L(-1) of CuSO4 exhibited the highest bacoside content of 8.73 mg g(-1) DW (∼1.42-fold higher) than in control cultures (6.14 mg g(-1) DW). This study indicates the effectiveness of abiotic elicitation on bacoside production in in vitro shoot cultures of this medicinally important herb known for its memory-enhancing properties.


Subject(s)
Bacopa/metabolism , Saponins/biosynthesis , Triterpenes/metabolism , Biomass , Copper Sulfate/chemistry , Culture Media/chemistry , Cyclopentanes/chemistry , Oxylipins/chemistry , Plant Shoots/metabolism , Salicylic Acid/chemistry , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...