Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 80(14): 2983-2995, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32503808

ABSTRACT

Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.


Subject(s)
Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Lung Neoplasms/secondary , Melanoma/pathology , Transcription Factors/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Melanoma/genetics , Melanoma/metabolism , Mice , Neoplasm Invasiveness , Transcription Factors/genetics , Tumor Cells, Cultured , Zinc Finger E-box Binding Homeobox 2/genetics
2.
Proteomics Clin Appl ; 13(4): e1800159, 2019 07.
Article in English | MEDLINE | ID: mdl-30768761

ABSTRACT

PURPOSE: The tyrosine kinase inhibitor (TKI) sunitinib is a multi-targeted agent approved across multiple cancer indications. Nevertheless, since approval, data has emerged to describe a worrisome side effect profile including hypertension, hand-foot syndrome, fatigue, diarrhea, mucositis, proteinuria, and (rarely) congestive heart failure. It has been hypothesized that the observed multi-parameter toxicity profile is related to "on-target" kinase inhibition in "off-target" tissues. EXPERIMENTAL DESIGN: To interrogate off-target effects in pre-clinical studies, a reverse phase protein array (RPPA) approach is employed. Mice are treated with sunitinib (40 mg kg-1 ) for 4 weeks, following which critical organs are removed. The Zeptosens RPPA platform is employed for protein expression analysis. RESULTS: Differentially expressed proteins associated with damage and/or stress are found in the majority of organs from treated animals. Proteins differentially expressed in the heart are associated with myocardial hypertrophy, ischaemia/reperfusion, and hypoxia. However, hypertrophy is not evidenced on histology. Mild proteinuria is observed; however, no changes in renal glomerular structure are visible via electron microscopy. In skin, proteins associated with cutaneous inflammation, keratinocyte hyper-proliferation, and increased inflammatory response are differentially expressed. CONCLUSIONS AND CLINICAL RELEVANCE: It is posited that pre-clinical implementation of a combined histopathological/RPPA approach provides a sensitive method to mechanistically elucidate the early manifestation of TKI on-target/organ off-target toxicities.


Subject(s)
Protein Array Analysis , Protein Kinase Inhibitors/adverse effects , Proteome/biosynthesis , Sunitinib/adverse effects , Animals , Female , Mice , Mice, Inbred BALB C , Protein Kinase Inhibitors/pharmacology , Sunitinib/pharmacology
3.
BMC Med ; 15(1): 101, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28578692

ABSTRACT

BACKGROUND: Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate. Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical information over current factors using unbiased genome-wide DNA methylation analyses. METHODS: We performed a comprehensive DNA methylation analysis during all progression stages of melanoma using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant melanoma from both primary (n = 33) and metastatic (n = 28) sites, integrating the DNA methylome with gene expression data. We validated the discovered biomarkers in three independent validation cohorts by pyrosequencing and immunohistochemistry. RESULTS: We identified and validated biomarkers for, and pathways involved in, melanoma development (e.g., HOXA9 DNA methylation) and tumor progression (e.g., TBC1D16 DNA methylation). In addition, we determined a prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein expression as biomarkers with prognostic information independent of tumor thickness and ulceration. CONCLUSIONS: Our data underscores the importance of epigenomic regulation in triggering metastatic dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.


Subject(s)
DNA Methylation , DNA, Neoplasm/metabolism , Melanoma/genetics , Melanoma/physiopathology , Skin Neoplasms/genetics , Skin Neoplasms/physiopathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Disease Progression , Female , Humans , Male , Middle Aged , Prognosis , Melanoma, Cutaneous Malignant
4.
Cancer Res ; 77(14): 3834-3845, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28455421

ABSTRACT

Triple-negative breast cancer (TNBC) patients commonly exhibit poor prognosis and high relapse after treatment, but there remains a lack of biomarkers and effective targeted therapies for this disease. Here, we report evidence highlighting the cell-cycle-related kinase CDK7 as a driver and candidate therapeutic target in TNBC. Using publicly available transcriptomic data from a collated set of TNBC patients (n = 383) and the METABRIC TNBC dataset (n = 217), we found CDK7 mRNA levels to be correlated with patient prognosis. High CDK7 protein expression was associated with poor prognosis within the RATHER TNBC cohort (n = 109) and the METABRIC TNBC cohort (n = 203). The highly specific CDK7 kinase inhibitors, BS-181 and THZ1, each downregulated CDK7-mediated phosphorylation of RNA polymerase II, indicative of transcriptional inhibition, with THZ1 exhibiting 500-fold greater potency than BS-181. Mechanistic investigations revealed that the survival of MDA-MB-231 TNBC cells relied heavily on the BCL-2/BCL-XL signaling axes in cells. Accordingly, we found that combining the BCL-2/BCL-XL inhibitors ABT-263/ABT199 with the CDK7 inhibitor THZ1 synergized in producing growth inhibition and apoptosis of human TNBC cells. Collectively, our results highlight elevated CDK7 expression as a candidate biomarker of poor prognosis in TNBC, and they offer a preclinical proof of concept for combining CDK7 and BCL-2/BCL-XL inhibitors as a mechanism-based therapeutic strategy to improve TNBC treatment. Cancer Res; 77(14); 3834-45. ©2017 AACR.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/biosynthesis , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Cyclin-Dependent Kinases/genetics , Female , Humans , Middle Aged , Phenylenediamines/pharmacology , Prognosis , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/genetics , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism , Cyclin-Dependent Kinase-Activating Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...