Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1187093, 2023.
Article in English | MEDLINE | ID: mdl-37662900

ABSTRACT

Objective: Activation of Rho-GTPases in macrophages causes inflammation and severe arthritis in mice. In this study, we explore if Rho-GTPases define the joint destination of pathogenic leukocytes, the mechanism by which they perpetuate rheumatoid arthritis (RA), and how JAK inhibition mitigates these effects. Methods: CD14+ cells of 136 RA patients were characterized by RNA sequencing and cytokine measurement to identify biological processes and transcriptional regulators specific for CDC42 hiCD14+ cells, which were summarized in a metabolic signature (MetSig). The effect of hypoxia and IFN-γ signaling on the metabolic signature of CD14+ cells was assessed experimentally. To investigate its connection with joint inflammation, the signature was translated into the single-cell characteristics of CDC42 hi synovial tissue macrophages. The sensitivity of MetSig to the RA disease activity and the treatment effect were assessed experimentally and clinically. Results: CDC42 hiCD14+ cells carried MetSig of genes functional in the oxidative phosphorylation and proteasome-dependent cell remodeling, which correlated with the cytokine-rich migratory phenotype and antigen-presenting capacity of these cells. Integration of CDC42 hiCD14+ and synovial macrophages marked with MetSig revealed the important role of the interferon-rich environment and immunoproteasome expression in the homeostasis of these pathogenic macrophages. The CDC42 hiCD14+ cells were targeted by JAK inhibitors and responded with the downregulation of immunoproteasome and MHC-II molecules, which disintegrated the immunological synapse, reduced cytokine production, and alleviated arthritis. Conclusion: This study shows that the CDC42-related MetSig identifies the antigen-presenting CD14+ cells that migrate to joints to coordinate autoimmunity. The accumulation of CDC42 hiCD14+ cells discloses patients perceptive to the JAKi treatment.


Subject(s)
Arthritis, Rheumatoid , Proteasome Endopeptidase Complex , Animals , Mice , Homeostasis , rho GTP-Binding Proteins , Inflammation , Cytokines
2.
J Autoimmun ; 130: 102843, 2022 06.
Article in English | MEDLINE | ID: mdl-35643017

ABSTRACT

Conditional mutation of protein geranylgeranyltransferase type I (GGTase-I) in macrophages (GLC) activates Rho-GTPases and causes arthritis in mice. Knocking out Rag1 in GLC mice alleviates arthritis which indicates that lymphocytes are required for arthritis development in those mice. To study GLC dependent changes in the adaptive immunity, we isolated CD4+ T cells from GLC mice (CD4+GLCs). Spleen and joint draining lymph nodes (dLN) CD4+GLCs exhibited high expression of Cdc42 and Rac1, which repressed the caudal HOXA proteins and activated the mechanosensory complex to facilitate migration. These CDC42/RAC1 rich CD4+GLCs presented a complete signature of GARP+NRP1+IKZF2+FOXP3+ regulatory T cells (Tregs) of thymic origin. Activation of the ß-catenin/Lef1 axis promoted a pro-inflammatory Th1 phenotype of Tregs, which was strongly associated with arthritis severity. Knockout of Cdc42 in macrophages of GLC mice affected CD4+ cell biology and triggered development of non-thymic Tregs. Knockout of Rac1 and RhoA had no such effects on CD4+ cells although it alleviated arthritis in GLC mice. Disrupting macrophage and T cell interaction with CTLA4 fusion protein reduced the Th1-driven inflammation and enrichment of thymic Tregs into dLNs. Antigen challenge reinforced the CD4+GLC phenotype in non-arthritic heterozygote GLC mice and increased accumulation of Rho-GTPase expressing thymic Tregs in dLNs. Our study demonstrates an unexpected role of macrophages in stimulating the development of pro-inflammatory thymic Tregs and reveal activation of Rho-GTPases behind their arthritogenic phenotype.


Subject(s)
Arthritis , Thymus Gland , rho GTP-Binding Proteins , Animals , Forkhead Transcription Factors/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , T-Lymphocytes, Regulatory , Thymus Gland/immunology , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
3.
Front Immunol ; 13: 840002, 2022.
Article in English | MEDLINE | ID: mdl-35222432

ABSTRACT

Proper physiological functioning of any cell type requires ordered chromatin organization. In this context, cohesin complex performs important functions preventing premature separation of sister chromatids after DNA replication. In partnership with CCCTC-binding factor, it ensures insulator activity to organize enhancers and promoters within regulatory chromatin. Homozygous mutations and dysfunction of individual cohesin proteins are embryonically lethal in humans and mice, which limits in vivo research work to embryonic stem cells and progenitors. Conditional alleles of cohesin complex proteins have been generated to investigate their functional roles in greater detail at later developmental stages. Thus, genome regulation enabled by action of cohesin proteins is potentially crucial in lineage cell development, including immune homeostasis. In this review, we provide current knowledge on the role of cohesin complex in leukocyte maturation and adaptive immunity. Conditional knockout and shRNA-mediated inhibition of individual cohesin proteins in mice demonstrated their importance in haematopoiesis, adipogenesis and inflammation. Notably, these effects occur rather through changes in transcriptional gene regulation than through expected cell cycle defects. This positions cohesin at the crossroad of immune pathways including NF-kB, IL-6, and IFNγ signaling. Cohesin proteins emerged as vital regulators at early developmental stages of thymocytes and B cells and after antigen challenge. Human genome-wide association studies are remarkably concordant with these findings and present associations between cohesin and rheumatoid arthritis, multiple sclerosis and HLA-B27 related chronic inflammatory conditions. Furthermore, bioinformatic prediction based on protein-protein interactions reveal a tight connection between the cohesin complex and immune relevant processes supporting the notion that cohesin will unearth new clues in regulation of autoimmunity.


Subject(s)
Chromatin , Genome-Wide Association Study , Animals , Autoimmunity/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Mice , Cohesins
4.
Carbohydr Polym ; 233: 115852, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32059903

ABSTRACT

The cell wall polysaccharide ulvan was isolated from two species of the seaweed Ulva collected along the Swedish west coast. Acidic extraction was benchmarked against hot water extraction with enzymatic purification and against commercial ulvan. Extracted ulvan contained 11-18 % g/g of ash, some protein (up to 1.3 % g N/g) but minimal colored impurities. The ulvans had high molecular weights (660,000-760,000 g/mol) and were composed of 77-79 % g/g carbohydrates, mainly rhamnose, xylose, glucose, glucuronic acid, and iduronic acid. The extraction protocol and the ulvan source strongly impact the molecular weight and the chemical composition. Acidic extraction caused almost complete desulfation of the isolated ulvan while the other method preserved a significant degree of SO3 substituents. Elemental analysis of ash remaining after thermal degradation showed presence of common mineral elements such as Na, Ca, Mg, Al, and K, but none of the heavy metals Pb, Hg, or As.


Subject(s)
Cell Wall/chemistry , Polysaccharides/chemistry , Ulva/chemistry , Chemical Fractionation , Molecular Weight , Polysaccharides/isolation & purification , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...