Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 26(6): 1055-64, 1998.
Article in English | MEDLINE | ID: mdl-9846943

ABSTRACT

We implanted polymer-based longitudinal intrafascicular electrodes (polyLIFEs) in feline dorsal rootlets acutely and for periods of two to six months to evaluate their electrical properties and biocompatibility. A total of 38 implanted electrodes were analyzed. Some 25 of the 38 electrodes were implanted with an insulative flexible polymer cuff, which was required for recording of afferent activity in situ. Electrode impedances remained stable for the duration of the experiments. The distributions of axons were measured at three levels of the implanted rootlets: the implant level, 1-2 mm proximal to the implant with respect to the cell body, and 1-2 mm distal to the implant with respect to the cell body. Similar measurements were made in five samples of fascicles neighboring an implant and six samples of control tissue from animals in which no implants were placed. The polyLIFEs demonstrated a high degree of biocompatibility, as no adverse effects on axon size were observed in either the implanted fascicle or neighboring neural tissue. However, the insulative cuffs were found to be a source of compression, resulting in necrosis of the neural tissue.


Subject(s)
Biocompatible Materials , Electrodes, Implanted , Ganglia, Spinal/physiology , Animals , Biomedical Engineering , Cats , Electric Stimulation Therapy , Electrodes, Implanted/adverse effects , Electrophysiology , Materials Testing , Polymers , Spinal Cord Injuries/therapy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...