Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Elife ; 72018 10 04.
Article in English | MEDLINE | ID: mdl-30284535

ABSTRACT

Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.


Subject(s)
Chitinases/genetics , Nitrogen-Fixing Bacteria/genetics , Root Nodules, Plant/microbiology , Symbiosis/genetics , Chitinases/metabolism , Gene Expression Regulation, Plant , Lipopolysaccharides/genetics , Lotus/chemistry , Lotus/genetics , Nitrogen/metabolism , Nitrogen-Fixing Bacteria/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Root Nodules, Plant/genetics
2.
Front Plant Sci ; 9: 216, 2018.
Article in English | MEDLINE | ID: mdl-29515615

ABSTRACT

TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS ( Hordeum-TILLING-University of Silesia) population created for spring barley cultivar "Sebastian" after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072-6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2 Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platform is the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a permanent source of new mutations. We offer the usage of this valuable resource to the interested barley researchers on cooperative basis.

3.
Methods Mol Biol ; 1610: 13-23, 2017.
Article in English | MEDLINE | ID: mdl-28439854

ABSTRACT

Lotus japonicus is a model legume used in the study of plant-microbe interactions, especially in the field of biological nitrogen fixation due to its ability to enter into a symbiotic relationship with a soil bacterium, Mesorhizobium loti. The LORE1 mutant population is a valuable resource for reverse genetics in L. japonicus due to its non-transgenic nature, high tagging efficiency, and low copy count. Here, we outline a workflow for identifying, ordering, and establishing homozygous LORE1 mutant lines for a gene of interest, LjFls2, including protocols for growth and genotyping of a segregating LORE1 population.


Subject(s)
Lotus/genetics , Mutagenesis, Insertional/genetics , Fabaceae/genetics , Fabaceae/microbiology , Genotype , Lotus/microbiology , Mutation/genetics , Plant Roots/genetics , Plant Roots/microbiology , Symbiosis/genetics , Symbiosis/physiology
4.
Methods Mol Biol ; 1610: 155-167, 2017.
Article in English | MEDLINE | ID: mdl-28439863

ABSTRACT

Plants are sessile organisms that can tune their body architecture to the environment. This is very pronounced in their root system. In particular, nutrient availability strongly influences the architecture of the root system; depending on the abundance of specific nutrients, root growth rates and lateral root number are modulated. The extent of these effects is important for plant adaptation and has a major impact on plant fitness. However, the assessment of quantitative effects on a scale large enough for identifying genes and variants using quantitative genetics is difficult, and well-developed methods have been largely restricted to the model species Arabidopsis thaliana. In this chapter, we present a protocol for high-throughput phenotyping of early root traits in the model legume plant Lotus japonicus. This species allows for the study of important root-associated traits that are not present in Arabidopsis, such as symbioses with nitrogen-fixing Rhizobia and arbuscular mycorrhizal fungi. The methods described in this chapter can be used in the context of reverse and forward genetics approaches to dissect the genetic basis of root growth in legumes.


Subject(s)
Lotus/genetics , Plant Roots/genetics , Gene Expression Regulation, Plant , Lotus/physiology , Phenotype , Plant Roots/physiology
5.
Plant J ; 88(2): 306-317, 2016 10.
Article in English | MEDLINE | ID: mdl-27322352

ABSTRACT

Long terminal repeat (LTR) retrotransposons are closely related to retroviruses, and their activities shape eukaryotic genomes. Here, we present a complete Lotus japonicus insertion mutant collection generated by identification of 640 653 new insertion events following de novo activation of the LTR element Lotus retrotransposon 1 (LORE1) (http://lotus.au.dk). Insertion preferences are critical for effective gene targeting, and we exploit our large dataset to analyse LTR element characteristics in this context. We infer the mechanism that generates the consensus palindromes typical of retroviral and LTR retrotransposon insertion sites, identify a short relaxed insertion site motif, and demonstrate selective integration into CHG-hypomethylated genes. These characteristics result in a steep increase in deleterious mutation rate following activation, and allow LORE1 active gene targeting to approach saturation within a population of 134 682 L. japonicus lines. We suggest that saturation mutagenesis using endogenous LTR retrotransposons with germinal activity can be used as a general and cost-efficient strategy for generation of non-transgenic mutant collections for unrestricted use in plant research.


Subject(s)
Lotus/genetics , Plant Proteins/metabolism , Retroelements/genetics , Terminal Repeat Sequences/genetics , DNA Methylation/genetics , Mutagenesis, Insertional , Mutation/genetics , Plant Proteins/genetics
6.
Plant J ; 83(4): 719-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26119469

ABSTRACT

Legume-rhizobium symbiosis contributes large quantities of fixed nitrogen to both agricultural and natural ecosystems. This global impact and the selective interaction between rhizobia and legumes culminating in development of functional root nodules have prompted detailed studies of the underlying mechanisms. We performed a screen for aberrant nodulation phenotypes using the Lotus japonicus LORE1 insertion mutant collection. Here, we describe the identification of amsh1 mutants that only develop small nodule primordia and display stunted shoot growth, and show that the aberrant nodulation phenotype caused by LORE1 insertions in the Amsh1 gene may be separated from the shoot phenotype. In amsh1 mutants, rhizobia initially became entrapped in infection threads with thickened cells walls. Some rhizobia were released into plant cells much later than observed for the wild-type; however, no typical symbiosome structures were formed. Furthermore, cytokinin treatment only very weakly induced nodule organogenesis in amsh1 mutants, suggesting that AMSH1 function is required downstream of cytokinin signaling. Biochemical analysis showed that AMSH1 is an active deubiquitinating enzyme, and that AMSH1 specifically cleaves K63-linked ubiquitin chains. Post-translational ubiquitination and deubiquitination processes involving the AMSH1 deubiquitinating enzyme are thus involved in both infection and organogenesis in Lotus japonicus.


Subject(s)
Arabidopsis Proteins/metabolism , Lotus/enzymology , Lotus/microbiology , Plant Proteins/metabolism , Rhizobium/pathogenicity , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Ubiquitin-Specific Proteases/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Lotus/physiology , Molecular Sequence Data , Plant Proteins/genetics , Symbiosis/physiology , Ubiquitin-Specific Proteases/genetics , Ubiquitination
7.
Plant Cell ; 25(11): 4616-26, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24285797

ABSTRACT

Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/physiology , Autophagy/physiology , Catalase/metabolism , Aminopeptidases/genetics , Aminopeptidases/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Autophagy/drug effects , Autophagy-Related Proteins , Bacterial Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Catalase/genetics , Cell Death/drug effects , Cell Death/genetics , Hydroxyurea/pharmacology , Mutation , Oxidative Stress
8.
Methods Mol Biol ; 1069: 119-46, 2013.
Article in English | MEDLINE | ID: mdl-23996313

ABSTRACT

The Lotus Retrotransposon 1 (LORE1) is used for genome-wide mutagenesis of the model legume Lotus japonicus. Characterization of the LORE1 insertion sites in individual mutant lines is critical for development and use of the resource. Here we present guidelines for use of the LORE1 reverse genetics resource and provide detailed protocols for insertion site identification and validation. For high-throughput identification of insertions in up to 9,216 pooled lines, the FSTpoolit protocol takes advantage of Splinkerette adapters, molecular barcoding, 2D pooling, Illumina sequencing, and automated data analysis using the freely available FSTpoolit software. Complementing the high-throughput approach, we describe a simplified sequence-specific amplification polymorphism (SSAP) protocol well suited for quick identification of insertion sites in a limited number of lines. Both the FSTpoolit and simplified SSAP protocols are generally applicable to insertion site identification in any insertional mutagenesis setup.


Subject(s)
Genotyping Techniques/methods , High-Throughput Screening Assays/methods , Lotus/genetics , Mutagenesis, Insertional , Retroelements , Computational Biology/methods , Gene Targeting , Mutation , Reproducibility of Results
9.
Plant J ; 69(4): 731-41, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22014280

ABSTRACT

Use of insertion mutants facilitates functional analysis of genes, but it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics in most plant species. The main challenge is developing efficient high-throughput procedures for both mutagenesis and identification of insertion sites. To date, only floral-dip T-DNA transformation of Arabidopsis has produced independent germinal insertions, thereby allowing generation of mutant populations from seeds of single plants. In addition, advances in insertion detection have been hampered by a lack of protocols, including software for automated data analysis, that take full advantage of high-throughput next-generation sequencing. We have addressed these challenges by developing the FSTpoolit protocol and software package, and here we demonstrate its efficacy by detecting 8935 LORE1 insertions in 3744 Lotus japonicus plants. The identified insertions show that the endogenous LORE1 retrotransposon is well suited for insertion mutagenesis due to homogenous gene targeting and exonic insertion preference. As LORE1 transposition occurs in the germline, harvesting seeds from a single founder line and cultivating progeny generates a complete mutant population. This ease of LORE1 mutagenesis, combined with the efficient FSTpoolit protocol, which exploits 2D pooling, Illumina sequencing and automated data analysis, allows highly cost-efficient development of a comprehensive reverse genetic resource.


Subject(s)
Genome, Plant/genetics , Genotyping Techniques/methods , Lotus/genetics , Mutagenesis, Insertional/methods , Retroelements/genetics , Software , Computational Biology , DNA Primers/genetics , Exons/genetics , High-Throughput Screening Assays , Mutation , Reverse Genetics , Seeds/genetics , Sequence Analysis, DNA , Terminal Repeat Sequences/genetics
10.
J Biol Chem ; 285(28): 21411-5, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20452979

ABSTRACT

Hydroxyurea (HU) is a well tolerated ribonucleotide reductase inhibitor effective in HIV, sickle cell disease, and blood cancer therapy. Despite a positive initial response, however, most treated cancers eventually progress due to development of HU resistance. Although RNR properties influence HU resistance in cell lines, the mechanisms underlying cancer HU resistance in vivo remain unclear. To address this issue, we screened for HU resistance in the plant Arabidopsis thaliana and identified seventeen unique catalase mutants, thereby establishing that HU toxicity depends on catalase in vivo. We further demonstrated that catalase is a direct HU target by showing that HU acts as a competitive inhibitor of catalase-mediated hydrogen peroxide decomposition. Considering also that catalase can accelerate HU decomposition in vitro and that co-treatment with another catalase inhibitor alleviates HU effects in vivo, our findings suggests that HU could act as a catalase-activated pro-drug. Clinically, we found high catalase activity in circulating cells from untreated chronic myeloid leukemia, offering a possible explanation for the efficacy of HU against this malignancy.


Subject(s)
Arabidopsis/metabolism , Catalase/chemistry , Drug Resistance, Neoplasm , Hydroxyurea/chemistry , Plant Extracts/pharmacology , Animals , Antineoplastic Agents/pharmacology , Chemistry, Pharmaceutical/methods , Erythrocytes/drug effects , Erythrocytes/pathology , Inhibitory Concentration 50 , Prodrugs/chemistry , Protein Binding , Rats , Ribonucleotide Reductases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...