Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-27468411

ABSTRACT

BACKGROUND: Previous work from this laboratory has evidenced the biomechanical role of forearm osseoligamentous structures in load transfer of applied forces. It has shown that forces transmitted across the distal radioulnar joint (DRUJ) and proximal radioulnar joint (PRUJ) are similar, though not identical, under axial loading conditions. The purpose of the study was to assess the articulating surface areas of the radioulnar joints and the volumes of the forearm bones addressing the hypothesis that there may be anatomic adaptations that reflect the biomechanical function of the integrated forearm unit. METHODS: The articulating surface areas of PRUJ and DRUJ were assessed using a laser scanner in 24 cadaver forearms. The articulating joint surfaces were additionally delineated from standardized photographs assessed by three observers. The surface areas of matched pairs of joints were compared on the null hypothesis that these were the same within a given forearm specimen. An additional 44 pairs of matched forearm bone volumes were measured using water displacement technique and again compared through statistical analysis (paired sample t-test and Bland-Altman analysis). RESULTS: The findings of this study are that the articulating surface areas of the DRUJ and PRUJ as well as the bone volumes are significantly different and, yet, strongly correlated. The paired sample t-test showed a significant difference between the surface areas of the DRUJ and PRUJ (p < 0.05). The PRUJ articulating surface area was marginally larger than the DRUJ with a PRUJ:DRUJ ratio of 1.02. Paired sample t-test showed a significant difference between the two bone volumes (p < 0.01) with a radius to ulna bone volume ratio of 0.81. When the olecranon was disregarded, radius volume was on average of 4% greater than ulna volume. CONCLUSION: This study demonstrates and defines the anatomical relationships between the two forearm bones and their articulating joints when matched for specimen. The data obtained are consistent with the theory of integrated forearm function generated from published biomechanical studies.

2.
J Hand Surg Am ; 40(9): 1776-84, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26163922

ABSTRACT

PURPOSE: To investigate the hypothesis that elbow extension alters the biomechanics of forearm rotation including force transmission in the distal and proximal radioulnar joints (DRUJ and PRUJ) and the interosseous ligament (IOL). METHODS: A cadaver model with a custom-designed jig was used to measure forearm pronosupination ranges, transmitted forces and contact areas across the PRUJ and DRUJ, and tension in the 3 main components of the IOL's central band. Testing with applied loads was undertaken throughout pronosupination with the elbow fully flexed (n = 15) and fully extended (n = 11). RESULTS: Elbow extension-flexion affected the range of forearm pronosupination, shifting the arc of rotation such that the forearm supinated maximally with the elbow flexed and pronated maximally with the elbow extended. Elbow extension also increased transmitted forces across the DRUJ and PRUJ while also increasing contact areas within the DRUJ and PRUJ. Elbow extension significantly increased tension in the central band of the IOL when the forearm was maximally pronated. CONCLUSIONS: Maximum supination occurred with the elbow flexed. Maximum pronation occurred with it extended. Elbow position altered forearm biomechanics, including force transmission across the PRUJ and DRUJ and transmitted tension in the IOL. CLINICAL RELEVANCE: The interplay of osseoligamentous forearm structures is such that we would anticipate surgical alteration of any one of them to have effects upon function of the others.


Subject(s)
Elbow Joint/physiology , Forearm/physiology , Ligaments, Articular/physiology , Muscle, Skeletal/physiology , Biomechanical Phenomena , Cadaver , Equipment Design , Humans , Pronation , Supination
SELECTION OF CITATIONS
SEARCH DETAIL
...