Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(9): e0274524, 2022.
Article in English | MEDLINE | ID: mdl-36137100

ABSTRACT

Since first identified in 1879, plasma, the fourth state of matter, has been developed and utilised in many fields. Nonthermal atmospheric plasma, also known as cold plasma, can be applied to liquids, where plasma reactive species such as reactive Oxygen and Nitrogen species and their effects can be retained and mediated through plasma-activated liquids (PAL). In the medical field, PAL is considered promising for wound treatment, sterilisation and cancer therapy due to its rich and relatively long-lived reactive species components. This study sought to identify any potential antagonistic effect between antioxidative intracellularly accumulated platinum nanoparticles (PtNPs) and PAL. We found that PAL can significantly reduce the viability of glioblastoma U-251MG cells. This did not involve measurable ROS influx but instead lead to lipid damage on the plasma membrane of cells exposed to PAL. Although the intracellular antioxidative PtNPs showed no protective effect against PAL, this study contributes to further understanding of principle cell killing routes of PAL and discovery of potential PAL-related therapy and methods to inhibit side effects.


Subject(s)
Glioblastoma , Metal Nanoparticles , Plasma Gases , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Death , Humans , Lipid Peroxidation , Lipids , Nitrogen , Oxygen , Plasma Gases/pharmacology , Platinum , Reactive Oxygen Species/metabolism
2.
Eur J Med Chem ; 224: 113736, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34384944

ABSTRACT

Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 µM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.


Subject(s)
Antineoplastic Agents/therapeutic use , Glioblastoma/drug therapy , Plasma Gases/metabolism , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Pyrazoles/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship
3.
Nanomedicine ; 36: 102436, 2021 08.
Article in English | MEDLINE | ID: mdl-34153528

ABSTRACT

Platinum nanoparticles (PtNPs) have been investigated for their antioxidant abilities in a range of biological and other applications. The ability to reduce off-target cold atmospheric plasma (CAP) cytotoxicity would be useful in Plasma Medicine; however, little has been published to date about the ability of PtNPs to reduce or inhibit the effects of CAP. Here we investigate whether PtNPs can protect against CAP-induced cytotoxicity in cancerous and non-cancerous cell lines. PtNPs were shown to dramatically reduce intracellular reactive species (RONS) production in U-251 MG cells. However, RONS generation was unaffected by PtNPs in medium without cells. PtNPs protect against CAP induced mitochondrial membrane depolarization, but not cell membrane permeabilization which is a CAP-induced RONS-independent event. PtNPs act as potent intracellular scavengers of reactive species and can protect against CAP induced cytotoxicity. PtNPs, showing no significant biocorrosion, may be useful as a catalytic antioxidant for healthy tissue and for protecting against CAP-induced tissue damage.


Subject(s)
Cytotoxins/adverse effects , Metal Nanoparticles , Oxidative Stress/drug effects , Plasma Gases/adverse effects , Platinum , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cytotoxins/pharmacology , HEK293 Cells , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Plasma Gases/pharmacology , Platinum/chemistry , Platinum/pharmacology
4.
C R Biol ; 339(5-6): 163-170, 2016.
Article in English | MEDLINE | ID: mdl-27156498

ABSTRACT

Brassica oleracea L. is one of the most economically important vegetable crop species of the genus Brassica L. This species is threatened in Ireland, without any prior reported genetic studies. The use of this species is being very limited due to its imprecise phylogeny and uncompleted genetic characterisation. The main objective of this study was to assess the genetic diversity and phylogenetic relationships of a set of 25 Irish B. oleracea accessions using the powerful amplified fragment length polymorphism (AFLP) technique. A total of 471 fragments were scored across all the 11 AFLP primer sets used, out of which 423 (89.8%) were polymorphic and could differentiate the accessions analysed. The dendrogram showed that cauliflowers were more closely related to cabbages than kales were, and accessions of some cabbage types were distributed among different clusters within cabbage subgroups. Approximately 33.7% of the total genetic variation was found among accessions, and 66.3% of the variation resided within accessions. The total genetic diversity (HT) and the intra-accessional genetic diversity (HS) were 0.251 and 0.156, respectively. This high level of variation demonstrates that the Irish B. oleracea accessions studied should be managed and conserved for future utilisation and exploitation in food and agriculture. In conclusion, this study addressed important phylogenetic questions within this species, and provided a new insight into the inclusion of four accessions of cabbages and kales in future breeding programs for improving varieties. AFLP markers were efficient for assessing genetic diversity and phylogenetic relationships in Irish B. oleracea species.


Subject(s)
Amplified Fragment Length Polymorphism Analysis/methods , Brassica/genetics , Genetic Variation , Agriculture , Brassica/classification , Breeding , DNA, Plant/genetics , Databases, Genetic , Ireland , Multigene Family , Phylogeny , Polymorphism, Genetic/genetics
5.
C R Biol ; 339(3-4): 133-40, 2016.
Article in English | MEDLINE | ID: mdl-26995396

ABSTRACT

The most economically important Brassica oleracea species is endangered in Ireland, with no prior reported genetic characterization studies. This study assesses the genetic diversity, population structure and relationships of B. oleracea germplasm in Ireland using microsatellite (SSRs) markers. A total of 118 individuals from 25 accessions of Irish B. oleracea were genotyped. The SSR loci used revealed a total of 47 alleles. The observed heterozygosity (0.699) was higher than the expected one (0.417). Moreover, the average values of fixation indices (F) were negative, indicating excess of heterozygotes in all accessions. Polymorphic information content (PIC) values of SSR loci ranged from 0.27 to 0.66, with an average of 0.571, and classified 10 loci as informative markers (PIC>0.5) to differentiate among the accessions studied. The genetic differentiation among accessions showed that 27.1% of the total genetic variation was found among accessions, and 72.9% of the variation resided within accessions. The averages of total heterozygosity (H(T)) and intra-accession genetic diversity (H(S)) were 0.577 and 0.442, respectively. Cluster analysis of SSR data distinguished among kale and Brussels sprouts cultivars. This study provided a new insight into the exploitation of the genetically diverse spring cabbages accessions, revealing a high genetic variation, as potential resources for future breeding programs. SSR loci were effective for differentiation among the accessions studied.


Subject(s)
Brassica/genetics , Genetic Variation , Microsatellite Repeats/genetics , Alleles , Cluster Analysis , Endangered Species , Genotype , Ireland , Polymorphism, Genetic , Seed Bank
6.
FEBS J ; 272(5): 1255-64, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15720399

ABSTRACT

Cinnamyl alcohol dehydrogenases (CAD; 1.1.1.195) catalyse the reversible conversion of p-hydroxycinnamaldehydes to their corresponding alcohols, leading to the biosynthesis of lignin in plants. Outside of plants their role is less defined. The gene for cinnamyl alcohol dehydrogenase from Helicobacter pylori (HpCAD) was cloned in Escherichia coli and the recombinant enzyme characterized for substrate specificity. The enzyme is a monomer of 42.5 kDa found predominantly in the cytosol of the bacterium. It is specific for NADP(H) as cofactor and has a broad substrate specificity for alcohol and aldehyde substrates. Its substrate specificity is similar to the well-characterized plant enzymes. High substrate inhibition was observed and a mechanism of competitive inhibition proposed. The enzyme was found to be capable of catalysing the dismutation of benzaldehyde to benzyl alcohol and benzoic acid. This dismutation reaction has not been shown previously for this class of alcohol dehydrogenase and provides the bacterium with a means of reducing aldehyde concentration within the cell.


Subject(s)
Alcohol Oxidoreductases/metabolism , Benzaldehydes/metabolism , Helicobacter pylori/enzymology , Alcohol Oxidoreductases/chemistry , Benzaldehydes/chemistry , Benzyl Alcohol/chemistry , Benzyl Alcohol/metabolism , Catalysis , Cloning, Molecular , Kinetics , NADP , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Subcellular Fractions , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...