Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 157: 155940, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878857

ABSTRACT

BACKGROUND AND AIM: Although it is well established that hormones like glucagon stimulates gluconeogenesis via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2, the role of neural signals in the regulation of gluconeogenesis remains uncertain. METHODS AND RESULTS: Here, we characterize the noradrenergic bundle architecture in mouse liver; we show that the sympathoexcitation induced by acute cold exposure promotes hyperglycemia and upregulation of gluconeogenesis via triggering of the CREB/CRTC2 pathway. Following its induction by dephosphorylation, CRTC2 translocates to the nucleus and drives the transcription of key gluconeogenic genes. Rodents submitted to different models of sympathectomy or knockout of CRTC2 do not activate gluconeogenesis in response to cold. Norepinephrine directly acts in hepatocytes mainly through a Ca2+-dependent pathway that stimulates CREB/CRTC2, leading to activation of the gluconeogenic program. CONCLUSION: Our data demonstrate the importance of the CREB/CRTC2 pathway in mediating effects of hepatic sympathetic inputs on glucose homeostasis, providing new insights into the role of norepinephrine in health and disease.

2.
Science ; 377(6610): eabq4515, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048943

ABSTRACT

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Subject(s)
Cognition , Cognitive Dysfunction , Down Syndrome , Gonadotropin-Releasing Hormone , Olfaction Disorders , Adult , Animals , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Down Syndrome/complications , Down Syndrome/drug therapy , Down Syndrome/psychology , Female , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/physiology , Gonadotropin-Releasing Hormone/therapeutic use , Humans , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Middle Aged , Olfaction Disorders/drug therapy , Olfaction Disorders/etiology , Synaptic Transmission/drug effects , Young Adult
3.
Am J Hum Genet ; 106(1): 58-70, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31883645

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.


Subject(s)
Cell Movement , Hypogonadism/congenital , Hypogonadism/genetics , Mutation , Nerve Growth Factors/genetics , Neurons/pathology , Adolescent , Animals , Cohort Studies , Female , Heterozygote , Humans , Hypogonadism/pathology , Male , Mice , Mice, Knockout , Nerve Growth Factors/physiology , Neurons/metabolism , Pedigree , Zebrafish
4.
Nat Med ; 24(6): 834-846, 2018 06.
Article in English | MEDLINE | ID: mdl-29760445

ABSTRACT

Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and corresponds with a high degree of comorbidities and economic burden. How PCOS is passed on from one generation to the next is not clear, but it may be a developmental condition. Most women with PCOS exhibit higher levels of circulating luteinizing hormone, suggestive of heightened gonadotropin-releasing hormone (GnRH) release, and anti-Müllerian hormone (AMH) as compared to healthy women. Excess AMH in utero may affect the development of the female fetus. However, as AMH levels drop during pregnancy in women with normal fertility, it was unclear whether their levels were also elevated in pregnant women with PCOS. Here we measured AMH in a cohort of pregnant women with PCOS and control pregnant women and found that AMH is significantly more elevated in the former group versus the latter. To determine whether the elevation of AMH during pregnancy in women with PCOS is a bystander effect or a driver of the condition in the offspring, we modeled our clinical findings by treating pregnant mice with AMH and followed the neuroendocrine phenotype of their female progeny postnatally. This treatment resulted in maternal neuroendocrine-driven testosterone excess and diminished placental metabolism of testosterone to estradiol, resulting in a masculinization of the exposed female fetus and a PCOS-like reproductive and neuroendocrine phenotype in adulthood. We found that the affected females had persistently hyperactivated GnRH neurons and that GnRH antagonist treatment in the adult female offspring restored their neuroendocrine phenotype to a normal state. These findings highlight a critical role for excess prenatal AMH exposure and subsequent aberrant GnRH receptor signaling in the neuroendocrine dysfunctions of PCOS, while offering a new potential therapeutic avenue to treat the condition during adulthood.


Subject(s)
Anti-Mullerian Hormone/blood , Fetus/metabolism , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/pathology , Adult , Animals , Anti-Mullerian Hormone/administration & dosage , Brain/pathology , Case-Control Studies , Estrous Cycle , Female , Fertility , Gonadotropin-Releasing Hormone/metabolism , Green Fluorescent Proteins/metabolism , Humans , Luteinizing Hormone/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurosecretory Systems/metabolism , Ovary/pathology , Phenotype , Placenta/pathology , Polycystic Ovary Syndrome/physiopathology , Pregnancy , Pregnancy Trimester, Second/blood
5.
J Comp Neurol ; 525(15): 3177-3189, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28577305

ABSTRACT

Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFPVglut2 , EYFPVgat , and GFPGad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes.


Subject(s)
Hypothalamus/growth & development , Hypothalamus/metabolism , Neurons/cytology , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Estrogen Receptor alpha/metabolism , Female , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hypothalamus/cytology , Immunohistochemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
6.
Cell ; 169(1): 161-173.e12, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340341

ABSTRACT

Generating a precise cellular and molecular cartography of the human embryo is essential to our understanding of the mechanisms of organogenesis in normal and pathological conditions. Here, we have combined whole-mount immunostaining, 3DISCO clearing, and light-sheet imaging to start building a 3D cellular map of the human development during the first trimester of gestation. We provide high-resolution 3D images of the developing peripheral nervous, muscular, vascular, cardiopulmonary, and urogenital systems. We found that the adult-like pattern of skin innervation is established before the end of the first trimester, showing important intra- and inter-individual variations in nerve branches. We also present evidence for a differential vascularization of the male and female genital tracts concomitant with sex determination. This work paves the way for a cellular and molecular reference atlas of human cells, which will be of paramount importance to understanding human development in health and disease. PAPERCLIP.


Subject(s)
Embryo, Mammalian/cytology , Fetus/cytology , Human Development , Imaging, Three-Dimensional/methods , Immunohistochemistry/methods , Microscopy/methods , Embryonic Development , Humans , Organogenesis , Peripheral Nervous System/cytology , Peripheral Nervous System/growth & development
7.
Development ; 143(21): 3969-3981, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27803058

ABSTRACT

Fertility in mammals is controlled by hypothalamic neurons that secrete gonadotropin-releasing hormone (GnRH). These neurons differentiate in the olfactory placodes during embryogenesis and migrate from the nose to the hypothalamus before birth. Information regarding this process in humans is sparse. Here, we adapted new tissue-clearing and whole-mount immunohistochemical techniques to entire human embryos/fetuses to meticulously study this system during the first trimester of gestation in the largest series of human fetuses examined to date. Combining these cutting-edge techniques with conventional immunohistochemistry, we provide the first chronological and quantitative analysis of GnRH neuron origins, differentiation and migration, as well as a 3D atlas of their distribution in the fetal brain. We reveal not only that the number of GnRH-immunoreactive neurons in humans is significantly higher than previously thought, but that GnRH cells migrate into several extrahypothalamic brain regions in addition to the hypothalamus. Their presence in these areas raises the possibility that GnRH has non-reproductive roles, creating new avenues for research on GnRH functions in cognitive, behavioral and physiological processes.


Subject(s)
Brain/embryology , Cell Differentiation , Cell Movement , Fertility/physiology , Fetus/cytology , Gonadotropin-Releasing Hormone/metabolism , Neurons/physiology , Anatomy, Artistic , Atlases as Topic , Brain/cytology , Brain/metabolism , Brain Mapping/methods , Embryo, Mammalian , Embryonic Development/physiology , Female , Fetus/embryology , Fetus/metabolism , Humans , Imaging, Three-Dimensional , Immunohistochemistry , Male , Neurons/metabolism
8.
Nat Commun ; 6: 6385, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25721933

ABSTRACT

Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.


Subject(s)
Antigens, CD/pharmacology , Median Eminence/physiology , Neuroglia/metabolism , Neuronal Plasticity/physiology , Semaphorins/pharmacology , Analysis of Variance , Animals , Antigens, CD/administration & dosage , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Estradiol/analogs & derivatives , Female , Flow Cytometry , Fluorescent Antibody Technique , Image Processing, Computer-Assisted , Immunohistochemistry , Mice , Neuronal Plasticity/drug effects , Ovariectomy , Progesterone , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Semaphorins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...