Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35886320

ABSTRACT

Firefighters are intermittently exposed to complex, mixed pollutants in random settings. Of those pollutants, PAHs (polycyclic aromatic hydrocarbons) are the most commonly studied and best understood. PAH exposure can occur via multiple routes; therefore, the levels of hydroxylated metabolites of PAHs in urine have been used as a biomonitoring tool for risk assessment. We performed a systematic review and meta-analysis of the literature to estimate the levels of urinary hydroxylated PAH (OHPAH) among firefighters, determine risk attributions, and, finally, evaluate the scope of preventive efforts and their utility as diagnostic tools. The meta-regression confirmed increases in OHPAH concentrations after fire activities by up to 1.71-times (p-values: <0.0001). Samples collected at a time point of 2−4 h after a fire suppression showed a consistent, statistically significant pattern as compared with baseline samples. The National Fire Protection Association (NFPA) standard 1582 Standard on Comprehensive Occupational Medical Program for Fire Departments lists various health examinations, including a urinalysis for occupational chemical exposure if indicated and medical screening for cancers and cardiovascular diseases. Biomonitoring is a valuable screening tool for assessing occupational exposure and the results of this meta-analysis support their inclusion in regular health screenings for firefighters.


Subject(s)
Air Pollutants, Occupational , Firefighters , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Humans , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis
2.
Article in English | MEDLINE | ID: mdl-33921138

ABSTRACT

Firefighters have an elevated risk of cancer, which is suspected to be caused by occupational and environmental exposure to fire smoke. Among many substances from fire smoke contaminants, one potential source of toxic exposure is polycyclic aromatic hydrocarbons (PAH). The goal of this paper is to identify the association between PAH exposure levels and contributing risk factors to derive best estimates of the effects of exposure on structural firefighters' working environment in fire. We surveyed four databases (Embase, Medline, Scopus, and Web of Science) for this systematic literature review. Generic inverse variance method for random effects meta-analysis was applied for two exposure routes-dermal and inhalation. In dermal, the neck showed the highest dermal exposure increased after the fire activity. In inhalation, the meta-regression confirmed statistically significant increases in PAH concentrations for longer durations. We also summarized the scientific knowledge on occupational exposures to PAH in fire suppression activities. More research into uncontrolled emergency fires is needed with regard to newer chemical classes of fire smoke retardant and occupational exposure pathways. Evidence-based PAH exposure assessments are critical for determining exposure-dose relationships in large epidemiological studies of occupational risk factors.


Subject(s)
Air Pollutants, Occupational , Firefighters , Fires , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Air Pollutants, Occupational/analysis , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...