Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 905: 167322, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37758126

ABSTRACT

Surfactants are widely used 'down-the-drain' chemicals with the potential to occur at high concentrations in local water bodies and to be part of unintentional environmental mixtures. Recently, increased regulatory focus has been placed on the impacts of complex mixtures in aquatic environments and the substances that are likely to drive mixture risk. This study assessed the contribution of surfactants to the total mixture pressure in freshwater ecosystems. Environmental concentrations, collated from existing French monitoring data, were combined with estimated ecotoxicological thresholds to calculate hazard quotients (HQ) for each substance, and hazard indices (HI) for each mixture. Two scenarios were investigated to correct for concentrations below the limit of quantification (LOQ) in the dataset. The first (best-case) scenario assumed all values

2.
Toxicol Sci ; 195(2): 145-154, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37490521

ABSTRACT

Large repositories of in vitro bioactivity data such as US EPA's Toxicity Forecaster (ToxCast) provide a wealth of publicly accessible toxicity information for thousands of chemicals. These data can be used to calculate point-of-departure (POD) estimates via concentration-response modeling that may serve as lower bound, protective estimates of in vivo effects. However, the data are predominantly based on mammalian models and discussions to date about their utility have largely focused on potential integration into human hazard assessment, rather than application to ecological risk assessment. The goal of the present study was to compare PODs based on (1) quantitative structure-activity relationships (QSARs), (2) the 5th centile of the activity concentration at cutoff (ACC), and (3) lower-bound cytotoxic burst (LCB) from ToxCast, with the distribution of in vivo PODs compiled in the Ecotoxicology Knowledgebase (ECOTOX). While overall correlation between ToxCast ACC5 and ECOTOX PODs for 649 chemicals was weak, there were significant associations among PODs based on LCB and ECOTOX, LCB and QSARs, and ECOTOX and QSARs. Certain classes of compounds showed moderate correlation across datasets (eg, antimicrobials/disinfectants), while others, such as organophosphate insecticides, did not. Unsurprisingly, more precise classifications of the data based on ECOTOX effect and endpoint type (eg, apical vs biochemical; acute vs chronic) had a significant effect on overall relationships. Results of this research help to define appropriate roles for data from new approach methodologies in chemical prioritization and screening of ecological hazards.

3.
Environ Toxicol Chem ; 42(6): 1229-1256, 2023 06.
Article in English | MEDLINE | ID: mdl-36715369

ABSTRACT

Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.


Subject(s)
Cyprinidae , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Estuaries , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Ecotoxicology
4.
Integr Environ Assess Manag ; 19(5): 1276-1296, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36524447

ABSTRACT

Watersheds are subjected to diverse anthropogenic inputs, exposing aquatic biota to a wide range of chemicals. Detection of multiple, different chemicals can challenge natural resource managers who often have to determine where to allocate potentially limited resources. Here, we describe a weight-of-evidence framework for retrospectively prioritizing aquatic contaminants. To demonstrate framework utility, we used data from 96-h caged fish studies to prioritize chemicals detected in the Milwaukee Estuary (WI, USA; 2017-2018). Across study years, 77/178 targeted chemicals were detected. Chemicals were assigned prioritization scores based on spatial and temporal detection frequency, environmental distribution, environmental fate, ecotoxicological potential, and effect prediction. Chemicals were sorted into priority bins based on the intersection of prioritization score and data availability. Data-limited chemicals represented those that did not have sufficient data to adequately evaluate ecotoxicological potential or environmental fate. Seven compounds (fluoranthene, benzo[a]pyrene, pyrene, atrazine, metolachlor, phenanthrene, and DEET) were identified as high or medium priority and data sufficient and flagged as candidates for further effects-based monitoring studies. Twenty-one compounds were identified as high or medium priority and data limited and flagged as candidates for further ecotoxicological research. Fifteen chemicals were flagged as the lowest priority in the watershed. One of these chemicals (2-methylnaphthalene) displayed no data limitations and was flagged as a definitively low-priority chemical. The remaining chemicals displayed some data limitations and were considered lower-priority compounds (contingent on further ecotoxicological and environmental fate assessments). The remaining 34 compounds were flagged as low or medium priority. Altogether, this prioritization provided a screening-level (non-definitive) assessment that could be used to focus further resource management and risk assessment activities in the Milwaukee Estuary. Furthermore, by providing detailed methodology and a practical example with real experimental data, we demonstrated that the proposed framework represents a transparent and adaptable approach for prioritizing contaminants in freshwater environments. Integr Environ Assess Manag 2023;19:1276-1296. © 2022 SETAC.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Retrospective Studies , Estuaries , Ecotoxicology , Risk Assessment/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
5.
Environ Toxicol Chem ; 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35735070

ABSTRACT

There are insufficient toxicity data to assess the ecological risks of many pharmaceuticals and personal care products (PPCPs). While data limitations are not uncommon for contaminants of environmental concern, PPCPs are somewhat unique in that an a priori understanding of their biological activities in conjunction with measurements of molecular, biochemical, or histological responses could provide a foundation for understanding mode(s) of action and predicting potential adverse apical effects. Over the past decade significant progress has been made in the development of new approach methodologies (NAMs) to efficiently quantify these types of endpoints using computational models and pathway-based in vitro and in vivo assays. The availability of open-access knowledgebases to curate biological response (including NAM) data and sophisticated bioinformatics tools to help interpret the information also has significantly increased. Finally, advances in the development and implementation of the adverse outcome pathway framework provide the critical conceptual underpinnings needed to translate NAM data into predictions of the ecologically relevant outcomes required by risk assessors and managers. The evolution and convergence of these various data streams, tools, and concepts provides the basis for a fundamental change in how ecological risks of PPCPs can be pragmatically assessed. Environ Toxicol Chem 2022;00:1-12. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

6.
Environ Pollut ; 289: 117928, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34426200

ABSTRACT

Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17ß-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARÉ£ activity, there were no significant effects on PPARÉ£-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.


Subject(s)
Water Pollutants, Chemical , Water Purification , Animals , Colorado , Environmental Monitoring , Female , Humans , Male , Rivers , Wastewater , Water Pollutants, Chemical/analysis
7.
Environ Toxicol Chem ; 40(5): 1255-1265, 2021 05.
Article in English | MEDLINE | ID: mdl-33315272

ABSTRACT

Routine whole effluent toxicity (WET) testing is commonly used to monitor effluent discharges for regulatory compliance in North America. However, the use of fish in WET testing raises ethical concerns and therefore an important question to be explored is whether invertebrates can be used to reduce and/or replace the need for vertebrate testing. The present study evaluated WET data collected for regulatory compliance between 2003 and 2019 (n = 2581 endpoints) from 20 different stationary onshore and offshore oil and gas facilities located across Canada and the United States. Our objective was to assess the relative sensitivity between vertebrates (i.e., fish) and invertebrates in paired samples and to evaluate trends in WET compliance. Despite the variability in testing endpoints, invertebrates displayed equal to or greater sensitivity to tested effluents than fish. For example, based on no-observed-effect concentrations for survival and growth, Americamysis bahia was found to be protective of Menidia beryllina in 90% of endpoint comparisons (n = 336). The results also indicated that regulatory compliance was high (94-100%), with most WET tests passing the established criteria by large margins (79-251%). The results of this comprehensive analysis of historical WET data can be used to improve future permit testing requirements and help answer the question of whether fish tests are needed for routine WET testing. Environ Toxicol Chem 2021;40:1255-1265. © 2020 SETAC.


Subject(s)
Water Pollutants, Chemical , Animals , Crustacea , Fishes , Invertebrates , Toxicity Tests , United States , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Environ Toxicol Chem ; 39(3): 587-594, 2020 03.
Article in English | MEDLINE | ID: mdl-31751493

ABSTRACT

Acute (96-h) toxicities of 5 systemic insecticides (chlorantraniliprole, cyantraniliprole, flupyradifurone, flubendiamide, and sulfoxaflor) were tested on larval Chironomus dilutus and compared with the neonicotinoid imidacloprid. Three insecticides were less acutely toxic than imidacloprid (2.5-25 times lower). However, chlorantraniliprole and cyantraniliprole were 1.5 to 1.8 times more toxic to C. dilutus. Thus, these ryanodine receptor agonists could pose a higher risk to aquatic insects than their neonicotinoid predecessors, warranting further studies. Environ Toxicol Chem 2020;39:587-594. © 2019 SETAC.


Subject(s)
Chironomidae/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chironomidae/growth & development , Larva/drug effects , Larva/growth & development , Toxicity Tests, Acute
9.
Environ Toxicol Chem ; 38(2): 289-301, 2019 02.
Article in English | MEDLINE | ID: mdl-30387526

ABSTRACT

Global environmental monitoring has indicated that the structure and function of some aquatic ecosystems has been significantly altered by human activities. There are many potential causes for these changes; however, one major concern is the increasing release of anthropogenic contaminants into aquatic environments. Although toxicological responses of individual organisms are typically well characterized, few studies have focused on characterizing toxicity at the ecosystem level. In fact, because of their scale and complexity, changes in ecosystem integrity are rarely considered in assessments of risks to ecosystems. This work attempts to move the conversation forward by defining integrity of ecosystems, reviewing current and historical approaches to measuring ecosystem integrity status (e.g., structural and functional measurements), and highlighting methods that could significantly contribute to the field of ecosystem toxicology (e.g., keystone species, environmental energetics, ecotoxicological modeling, and adverse outcome pathways [AOPs]). Through a critical analysis of current and historical methodologies, the present study offers a comprehensive, conceptual framework for the assessment of risks of contaminant exposure for whole ecosystems and proposes steps to facilitate better diagnoses of the integrity of aquatic systems. Environ Toxicol Chem 2019;38:289-301. © 2018 SETAC.


Subject(s)
Aquatic Organisms/drug effects , Ecosystem , Environmental Monitoring/methods , Water Pollutants , Animals , Aquatic Organisms/growth & development , Ecotoxicology , Humans , Risk Assessment , Water Pollutants/analysis , Water Pollutants/toxicity
10.
Environ Toxicol Chem ; 36(11): 3091-3101, 2017 11.
Article in English | MEDLINE | ID: mdl-28636110

ABSTRACT

Extensive agricultural use of neonicotinoid insecticide products has resulted in the presence of neonicotinoid mixtures in surface waters worldwide. Although many aquatic insect species are known to be sensitive to neonicotinoids, the impact of neonicotinoid mixtures is poorly understood. In the present study, the cumulative toxicities of binary and ternary mixtures of select neonicotinoids (imidacloprid, clothianidin, and thiamethoxam) were characterized under acute (96-h) exposure scenarios using the larval midge Chironomus dilutus as a representative aquatic insect species. Using the MIXTOX approach, predictive parametric models were fitted and statistically compared with observed toxicity in subsequent mixture tests. Single-compound toxicity tests yielded median lethal concentration (LC50) values of 4.63, 5.93, and 55.34 µg/L for imidacloprid, clothianidin, and thiamethoxam, respectively. Because of the similar modes of action of neonicotinoids, concentration-additive cumulative mixture toxicity was the predicted model. However, we found that imidacloprid-clothianidin mixtures demonstrated response-additive dose-level-dependent synergism, clothianidin-thiamethoxam mixtures demonstrated concentration-additive synergism, and imidacloprid-thiamethoxam mixtures demonstrated response-additive dose-ratio-dependent synergism, with toxicity shifting from antagonism to synergism as the relative concentration of thiamethoxam increased. Imidacloprid-clothianidin-thiamethoxam ternary mixtures demonstrated response-additive synergism. These results indicate that, under acute exposure scenarios, the toxicity of neonicotinoid mixtures to C. dilutus cannot be predicted using the common assumption of additive joint activity. Indeed, the overarching trend of synergistic deviation emphasizes the need for further research into the ecotoxicological effects of neonicotinoid insecticide mixtures in field settings, the development of better toxicity models for neonicotinoid mixture exposures, and the consideration of mixture effects when setting water quality guidelines for this class of pesticides. Environ Toxicol Chem 2017;36:3091-3101. © 2017 SETAC.


Subject(s)
Chironomidae/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Water Pollutants, Chemical/toxicity , Animals , Guanidines/toxicity , Larva/drug effects , Nitro Compounds/toxicity , Oxazines/toxicity , Thiamethoxam , Thiazoles/toxicity , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...