Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847048

ABSTRACT

To evaluate the properties of two nickel-titanium (NiTi) reciprocating endodontic instruments (commercially known as Procodile and Reziflow), a total of 40 size 25 and 0.06 taper new Procodile and Reziflow instruments (n = 20) were subjected to cyclic fatigue tests (60° angle of curvature, 5-mm radius) at 20 °C and 37 °C and a torsional test based on ISO 3630-1. The fracture surface of each fragment was examined. The morphological, mechanical, chemical, thermal, and phase composition characteristics of the files were investigated by field-emission gun scanning electron microscopy (FEG-SEM) equipped with an energy-dispersive X-ray (EDX) detector, focused ion beam analysis (FIB), micro-Raman spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Auger electron spectroscopy (AES). Reziflow showed higher cyclic fatigue resistance than Procodile at 37 °C (p < 0.05). The maximum torsional strength of Procodile was lower than that of Reziflow (p < 0.05). No difference was found between their angular rotations to fracture (p > 0.05). SEM, FIB, Micro-Raman, and AES analyses revealed the presence of an Nb/Nb2O5 coating on the Procodile surface. DSC and XRD analysis confirmed that both files consist of an almost austenitic phase structure at 37 °C. The cyclic fatigue resistance of Procodile and Reziflow significantly decreases upon exposure to body temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...