Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(26): 5153-5163, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38895763

ABSTRACT

Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer-Emmett-Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bend-and-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EA-TB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure.

2.
J Am Chem Soc ; 144(37): 17198-17208, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36074146

ABSTRACT

Redox-active organic materials have emerged as promising alternatives to conventional inorganic electrode materials in electrochemical devices for energy storage. However, the deployment of redox-active organic materials in practical lithium-ion battery devices is hindered by their undesired solubility in electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity. Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsic microporosity (PIMs) that possess an open network of subnanometer pores and abundant accessible carbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solution-processed into thin films and polymer-carbon composites with a homogeneously dispersed microstructure while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIM electrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacity decay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activity, and solution processability may have broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications.

3.
Membranes (Basel) ; 12(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36135900

ABSTRACT

In this work, thin film composite (TFC) membranes were fabricated with the selective layer based on a blend of polyimide Matrimid®5218 and polymer of intrinsic microporosity (PIM) composed of Tröger's base, TB, and dimethylethanoanthracene units, PIM-EA(Me2)-TB. The TFCs were prepared with different ratios of the two polymers and the effect of the PIM content in the blend of the gas transport properties was studied for pure He, H2, O2, N2, CH4, and CO2 using the well-known time lag method. The prepared TFC membranes were further characterized by IR spectroscopy and scanning electron microscopy (SEM). The role of the support properties for the TFC membrane preparation was analysed for four different commercial porous supports (Nanostone Water PV 350, Vladipor Fluoroplast 50, Synder PAN 30 kDa, and Sulzer PAN UF). The Sulzer PAN UF support with a relatively small pore size favoured the formation of a defect-free dense layer. All the TFC membranes supported on Sulzer PAN UF presented a synergistic enhancement in CO2 permeance, and CO2/CH4 and CO2/N2 ideal selectivity. The permeance increased about two orders of magnitude with respect to neat Matrimid, up to ca. 100 GPU, the ideal CO2/CH4 selectivity increased from approximately 10 to 14, and the CO2/N2 selectivity from approximately 20 to 26 compared to the thick dense reference membrane of PIM-EA(Me2)-TB. The TFC membranes exhibited lower CO2 permeances than expected on the basis of their thickness-most likely due to enhanced aging of thin films and to the low surface porosity of the support membrane, but a higher selectivity for the gas pairs CO2/N2, CO2/CH4, O2/N2, and H2/N2.

4.
ACS Appl Mater Interfaces ; 14(17): 19938-19948, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35466666

ABSTRACT

Graphitic carbon nitride (g-C3N4) is known to photogenerate hydrogen peroxide in the presence of hole quenchers in aqueous environments. Here, the g-C3N4 photocatalyst is embedded into a host polymer of intrinsic microporosity (PIM-1) to provide recoverable heterogenized photocatalysts without loss of activity. Different types of g-C3N4 (including Pt@g-C3N4, Pd@g-C3N4, and Au@g-C3N4) and different quenchers are investigated. Exploratory experiments yield data that suggest binding of the quencher either (i) directly by adsorption onto the g-C3N4 (as shown for α-glucose) or (ii) indirectly by absorption into the microporous polymer host environment (as shown for Triton X-100) enhances the overall photochemical H2O2 production process. The amphiphilic molecule Triton X-100 is shown to interact only weakly with g-C3N4 but strongly with PIM-1, resulting in accumulation and enhanced H2O2 production due to the microporous polymer host.

5.
Membranes (Basel) ; 11(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073010

ABSTRACT

This study reports for the first time the preparation of an electrospun microfibrous mat of PIM-EA-TB. The electrospinning was carried out using a chloroform/n-Propyl-lactate (n-PL) binary solvent system with different chloroform/nPL ratios, in order to control the morphology of the microfibres. With pure chloroform, porous and dumbbell shape fibres were obtained whereas, with the addition on n-PL, circular and thinner fibres have been produced due to the higher boiling point and the higher conductivity of n-PL. The electrospinning process conditions were investigated to evaluate their impact on the fibres' morphology. These microfibrous mats presented potential to be used as breathable/waterproof materials, with a pore diameter of 11 µm, an air resistance of 25.10-7 m-1 and water breakthrough pressure of 50 mBar.

6.
RSC Adv ; 11(44): 27432-27442, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-35480644

ABSTRACT

Microporous polymer materials based on molecularly "stiff" structures provide intrinsic microporosity, typical micropore sizes of 0.5 nm to 1.5 nm, and the ability to bind guest species. The polyamine PIM-EA-TB contains abundant tertiary amine sites to interact via hydrogen bonding to guest species in micropores. Here, quercetin and catechin are demonstrated to bind and accumulate into PIM-EA-TB. Voltammetric data suggest apparent Langmuirian binding constants for catechin of 550 (±50) × 103 M-1 in acidic solution at pH 2 (PIM-EA-TB is protonated) and 130 (±13) × 103 M-1 in neutral solution at pH 6 (PIM-EA-TB is not protonated). The binding capacity is typically 1 : 1 (guest : host polymer repeat unit), but higher loadings are readily achieved by host/guest co-deposition from tetrahydrofuran solution. In the rigid polymer environment, bound ortho-quinol guest species exhibit 2-electron 2-proton redox transformation to the corresponding quinones, but only in a thin mono-layer film close to the electrode surface. Release of guest molecules occurs depending on the level of loading and on the type of guest either spontaneously or with electrochemical stimuli.

7.
Nanoscale ; 12(33): 17405-17410, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32793938

ABSTRACT

Membranes are crucial to lowering the huge energy costs of chemical separations. Whilst some promising polymers demonstrate excellent transport properties, problems of plasticisation and physical aging due to mobile polymer chains, amongst others, prevent their exploitation in membranes for industrial separations. Here we reveal that molecular interactions between a polymer of intrinsic microporosity (PIM) matrix and a porous aromatic framework additive (PAF-1) can simultaneously address plasticisation and physical aging whilst also increasing gas transport selectivity. Extensive spectroscopic characterisation and control experiments involving two near-identical PIMs, one with methyl groups (PIM-EA(Me2)-TB) and one without (PIM-EA(H2)-TB), directly confirm the key molecular interaction as the adsoprtion of methyl groups from the PIM matrix into the nanopores of the PAF. This interaction reduced physical aging by 50%, suppressed polymer chain mobilities at high pressure and increased H2 selectivity over larger gases such as CH4 and N2.

8.
Membranes (Basel) ; 10(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260161

ABSTRACT

A detailed comparison of the gas permeability of four Polymers of Intrinsic Microporosity containing Tröger's base (TB-PIMs) is reported. In particular, we present the results of a systematic study of the differences between four related polymers, highlighting the importance of the role of methyl groups positioned at the bridgehead of ethanoanthracene (EA) and triptycene (Trip) components. The PIMs show BET surface areas between 845-1028 m2 g-1 and complete solubility in chloroform, which allowed for the casting of robust films that provided excellent permselectivities for O2/N2, CO2/N2, CO2/CH4 and H2/CH4 gas pairs so that some data surpass the 2008 Robeson upper bounds. Their interesting gas transport properties were mostly ascribed to a combination of high permeability and very strong size-selectivity of the polymers. Time lag measurements and determination of the gas diffusion coefficient of all polymers revealed that physical ageing strongly increased the size-selectivity, making them suitable for the preparation of thin film composite membranes.

9.
Angew Chem Int Ed Engl ; 59(27): 10918-10923, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32212372

ABSTRACT

Hybrid electrodes with improved O2 tolerance and capability of CO2 conversion into liquid products in the presence of O2 are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic CO2 molecule and the basic amino group of aniline renders enhanced CO2 separation from O2 . Loaded with a cobalt phthalocyanine-based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 % O2 in the CO2 feed gas. The electrode can still produce CO at an O2 /CO2 ratio as high as 9:1. Switching to a Sn-based catalyst, for the first time O2 -tolerant CO2 electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of 56.7 mA cm-2 in the presence of 5 % O2 .

10.
Chemosphere ; 248: 125993, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32004889

ABSTRACT

CO2 reduction offers an attractive alternative green synthetic route for ethylene, especially where CO2 could be sourced from industrial exhausts and in combination with green power sources. However, practical applications are currently limited due to the unfortunately low selectivity of cathode materials towards ethylene. This work uses polymers with intrinsic microporosity (PIMs) to improve the performance of copper gas diffusion electrodes for CO2 reduction to ethylene. We report an improved selectivity and activity towards ethylene with the addition of a thin PIMs layer, which is seen as improved Faradaic efficiency, increased stability and a shift in the reduction to lower overpotential. This improvement is highly dependent on the thickness of the added polymer layer, with too thick a layer having a detrimental impact on the hydrophobicity of the gas diffusion layer. With a compromise in loading, PIMs can be used to enhance the activity and selectivity of catalysts for targeted CO2 reduction to ethylene.


Subject(s)
Carbon Dioxide/chemistry , Ethylenes/chemistry , Polymers/chemistry , Catalysis , Copper , Diffusion , Electrodes , Hydrophobic and Hydrophilic Interactions , Porosity
11.
Nat Mater ; 19(2): 195-202, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31792424

ABSTRACT

Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger's base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.

13.
ACS Appl Mater Interfaces ; 11(34): 31191-31199, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31374170

ABSTRACT

Nanohybrid materials based on nanoparticles of the intrinsically microporous polymer PIM-1 and graphene oxide (GO) are prepared from aqueous dispersions with a reprecipitation method, resulting in the surface of the GO sheets being decorated with nanoparticles of PIM-1. The significant blueshift in fluorescence signals for the GO/PIM-1 nanohybrids indicates modification of the optoelectronic properties of the PIM-1 in the presence of the GO due to their strong interactions. The stiffening in the Raman G peak of GO (by nearly 6 cm-1) further indicates p-doping of the GO in the presence of PIM. Kelvin probe force microscopy (KPFM) and electrochemical reduction measurements of the nanohybrids provide direct evidence for charge transfer between the PIM-1 nanoparticles and the GO nanosheets. These observations will be of importance for future applications of GO-PIM-1 nanohybrids as substrates and promoters in catalysis and sensing.

14.
ACS Macro Lett ; 8(8): 1022-1028, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-35619481

ABSTRACT

Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships, including physical aging. In this context, the glass transition plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs before their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs.

15.
Sci Bull (Beijing) ; 64(24): 1890-1895, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-36659584

ABSTRACT

The electrochemical reduction of CO2 to give CO in the presence of O2 would allow the direct valorization of flue gases from fossil fuel combustion and of CO2 captured from air. However, it is a challenging task because O2 reduction is thermodynamically favored over that of CO2. 5% O2 in CO2 near catalyst surface is sufficient to completely inhibit the CO2 reduction reaction. Here we report an O2-tolerant catalytic CO2 reduction electrode inspired by part of the natural photosynthesis unit. The electrode comprises of heterogenized cobalt phthalocyanine molecules serving as the cathode catalyst with >95% Faradaic efficiency (FE) for CO2 reduction to CO coated with a polymer of intrinsic microporosity that works as a CO2-selective layer with a CO2/O2 selectivity of ∼20. Integrated into a flow electrolytic cell, the hybrid electrode operating with a CO2 feed gas containing 5% O2 exhibits a FECO of 75.9% with a total current density of 27.3 mA/cm2 at a cell voltage of 3.1 V. A FECO of 49.7% can be retained when the O2 fraction increases to 20%. Stable operation for 18 h is demonstrated. The electrochemical performance and O2 tolerance can be further enhanced by introducing cyano and nitro substituents to the phthalocyanine ligand.

16.
Membranes (Basel) ; 8(4)2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30558237

ABSTRACT

Gas transport properties of PIM-EA(H2)-TB, a microporous Tröger's base polymer, were systematically studied over a range of pressure and temperature. Permeability coefficients of pure CO2, N2, CH4 and H2 were determined for upstream pressures up to 20 bar and temperatures up to 200 °C. PIM-EA(H2)-TB exhibited high permeability coefficients in absence of plasticization phenomena. The permeability coefficient of N2, CH4 and H2 increased with increasing temperature while CO2 permeability decreased with increasing temperature as expected for a glassy polymer. The diffusion and solubility coefficients were also analysed individually and compared with other polymers of intrinsic microporosity. From these results, the activation energies of permeation, diffusion and sorption enthalpies were calculated using an Arrhenius equation.

17.
Nanomaterials (Basel) ; 8(7)2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30021972

ABSTRACT

The one-step vacuum carbonization synthesis of a platinum nano-catalyst embedded in a microporous heterocarbon (Pt@cPIM) is demonstrated. A nitrogen-rich polymer of an intrinsic microporosity (PIM) precursor is impregnated with PtCl62- to give (after vacuum carbonization at 700 °C) a nitrogen-containing heterocarbon with embedded Pt nanoparticles of typically 1⁻4 nm diameter (with some particles up to 20 nm diameter). The Brunauer-Emmett-Teller (BET) surface area of this hybrid material is 518 m² g-1 (with a cumulative pore volume of 1.1 cm³ g-1) consistent with the surface area of the corresponding platinum-free heterocarbon. In electrochemical experiments, the heterocarbon-embedded nano-platinum is observed as reactive towards hydrogen oxidation, but essentially non-reactive towards bigger molecules during methanol oxidation or during oxygen reduction. Therefore, oxygen reduction under electrochemical conditions is suggested to occur mainly via a 2-electron pathway on the outer carbon shell to give H2O2. Kinetic selectivity is confirmed in exploratory catalysis experiments in the presence of H2 gas (which is oxidized on Pt) and O2 gas (which is reduced on the heterocarbon surface) to result in the direct formation of H2O2.

18.
Polymers (Basel) ; 11(1)2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30960029

ABSTRACT

The effect on the gas transport properties of Matrimid®5218 of blending with the polymer of intrinsic microporosity PIM-EA(H2)-TB was studied by pure and mixed gas permeation measurements. Membranes of the two neat polymers and their 50/50 wt % blend were prepared by solution casting from a dilute solution in dichloromethane. The pure gas permeability and diffusion coefficients of H2, He, O2, N2, CO2 and CH4 were determined by the time lag method in a traditional fixed volume gas permeation setup. Mixed gas permeability measurements with a 35/65 vol % CO2/CH4 mixture and a 15/85 vol % CO2/N2 mixture were performed on a novel variable volume setup with on-line mass spectrometric analysis of the permeate composition, with the unique feature that it is also able to determine the mixed gas diffusion coefficients. It was found that the permeability of Matrimid increased approximately 20-fold with the addition of 50 wt % PIM-EA(H2)-TB. Mixed gas permeation measurements showed a slightly stronger pressure dependence for selectivity of separation of the CO2/CH4 mixture as compared to the CO2/N2 mixture, particularly for both the blended membrane and the pure PIM. The mixed gas selectivity was slightly higher than for pure gases, and although N2 and CH4 diffusion coefficients strongly increase in the presence of CO2, their solubility is dramatically reduced as a result of competitive sorption. A full analysis is provided of the difference between the pure and mixed gas transport parameters of PIM-EA(H2)-TB, Matrimid®5218 and their 50:50 wt % blend, including unique mixed gas diffusion coefficients.

19.
ChemSusChem ; 10(20): 4014-4017, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28877422

ABSTRACT

The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO2 /N2 selectivity.


Subject(s)
Carbon Dioxide/isolation & purification , Membranes, Artificial , Nitrogen/isolation & purification , Polymers/chemistry , Trimethylsilyl Compounds/chemistry , Carbon Dioxide/chemistry , Nitrogen/chemistry , Permeability , Porosity
20.
ACS Appl Mater Interfaces ; 8(40): 27311-27321, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27600279

ABSTRACT

A study integrating advanced experimental and modeling tools was undertaken to characterize the microstructural and interfacial properties of mixed matrix membranes (MMMs) composed of the zeolitic imidazolate framework ZIF-8 nanoparticles (NPs) and two polymers of intrinsic microporosity (PIM-1 and PIM-EA-TB). Analysis probed both the initial ZIF-8/PIM-1 colloidal suspensions and the final hybrid membranes. By combination of dynamic light scattering (DLS) and transmission electron microscopy (TEM) analytical and imaging techniques with small-angle X-ray scattering (SAXS), the colloidal suspensions were shown to consist mainly of two distinct kinds of particles, namely, polymer aggregates of about 200 nm in diameter and densely packed ZIF-8-NP aggregates of a few 100 nm in diameter with a 3 nm thick polymer top-layer. Such aggregates are likely to impart the granular texture of ZIF-8/PIMs MMMs as shown by SEM-XEDS analysis. At the molecular scale, modeling studies showed that the surface coverage of ZIF-8 NPs by both polymers appears not to be optimal with the presence of microvoids at the interfaces that indicates only a moderate compatibility between the polymer and ZIF-8. This study shows that the microstructure of MMMs results from a complex interplay between the ZIF-8/PIM compatibility, solvent, surface chemistry of the ZIF-8 NPs, and the physicochemical properties of the polymers such as molecular structure and rigidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...