Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 25(13): 7553-60, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19507848

ABSTRACT

Molecular dynamics (MD) simulations are used to study the behavior of n-decane under sub-10 nm confinement between two gold {111} surfaces. This confinement and dielectric medium are characteristic of those used in nanoscale electromachining (nano-EM) processes; thus, it is important that the behavior of the nanoconfined dielectric medium be investigated for better process understanding. Results obtained via MD simulations indicate that, when confined down to a thickness less than 1 nm, the mechanical boundary conditions trigger organization in the n-decane medium, resulting in two distinct molecular layers. The n-decane chains lie flat on the {111} gold surfaces and show preferred orientation in the close-packed 110 crystallographic directions. A 4-fold increase in the maximum local density as compared with the experimental bulk (liquid) density is observed at the interface between the molecular medium and the gold {111} surfaces, regardless of confinement spacing. Radial distribution function curves are used to quantitatively examine organization of the medium into molecular layers. The deliberate introduction of ledges (atomic steps) on the gold surface triggers a preferred alignment of the n-decane chains toward the boundaries of the ledges.

2.
Phys Rev Lett ; 99(1): 017601, 2007 Jul 06.
Article in English | MEDLINE | ID: mdl-17678188

ABSTRACT

Nanoscale confinement of dielectric molecules is expected to influence their breakdown mechanism in applications such as nanoprobe based machining, molecular electronics, and other related technologies. This Letter presents the first experimental study of the breakdown of nonpolar, nonthiolated liquid dielectrics in the nanometer regime and develops a field emission assisted avalanche based approach to model such behavior. The studies show that dielectric breakdown in the sub-20 nm regime is independent of the cathode materials and is dominated by the electron emission and atomic cluster migration due to the "sub-20 nm scale confinement of the liquid dielectric."

SELECTION OF CITATIONS
SEARCH DETAIL
...