Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 35(5): 912-921, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38535992

ABSTRACT

Structure-based drug design, which relies on precise understanding of the target protein and its interaction with the drug candidate, is dramatically expedited by advances in computational methods for candidate prediction. Yet, the accuracy needs to be improved with more structural data from high throughput experiments, which are challenging to generate, especially for dynamic and weak associations. Herein, we applied native mass spectrometry (native MS) to rapidly characterize ligand binding of an allosteric heterodimeric complex of SARS-CoV-2 nonstructural proteins (nsp) nsp10 and nsp16 (nsp10/16), a complex essential for virus survival in the host and thus a desirable drug target. Native MS showed that the dimer is in equilibrium with monomeric states in solution. Consistent with the literature, well characterized small cosubstrate, RNA substrate, and product bind with high specificity and affinity to the dimer but not the free monomers. Unsuccessfully designed ligands bind indiscriminately to all forms. Using neutral gas collision, the nsp16 monomer with bound cosubstrate can be released from the holo dimer complex, confirming the binding to nsp16 as revealed by the crystal structure. However, we observed an unusual migration of the endogenous zinc ions bound to nsp10 to nsp16 after collisional dissociation. The metal migration can be suppressed by using surface collision with reduced precursor charge states, which presumably resulted in minimal gas-phase structural rearrangement and highlighted the importance of complementary techniques. With minimal sample input (∼µg), native MS can rapidly detect ligand binding affinities and locations in dynamic multisubunit protein complexes, demonstrating the potential of an "all-in-one" native MS assay for rapid structural profiling of protein-to-AI-based compound systems to expedite drug discovery.


Subject(s)
Mass Spectrometry , Methyltransferases , Protein Multimerization , SARS-CoV-2 , Viral Nonstructural Proteins , Viral Regulatory and Accessory Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , SARS-CoV-2/chemistry , Mass Spectrometry/methods , Allosteric Regulation , Protein Binding , Humans , Ligands , Models, Molecular
2.
iScience ; 27(2): 108976, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327783

ABSTRACT

Coronavirus nucleocapsid protein (NP) of SARS-CoV-2 plays a central role in many functions important for virus proliferation including packaging and protecting genomic RNA. The protein shares sequence, structure, and architecture with nucleocapsid proteins from betacoronaviruses. The N-terminal domain (NPRBD) binds RNA and the C-terminal domain is responsible for dimerization. After infection, NP is highly expressed and triggers robust host immune response. The anti-NP antibodies are not protective and not neutralizing but can effectively detect viral proliferation soon after infection. Two structures of SARS-CoV-2 NPRBD were determined providing a continuous model from residue 48 to 173, including RNA binding region and key epitopes. Five structures of NPRBD complexes with human mAbs were isolated using an antigen-bait sorting. Complexes revealed a distinct complement-determining regions and unique sets of epitope recognition. This may assist in the early detection of pathogens and designing peptide-based vaccines. Mutations that significantly increase viral load were mapped on developed, full length NP model, likely impacting interactions with host proteins and viral RNA.

3.
Microbiol Resour Announc ; 12(10): e0050723, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37747257

ABSTRACT

Clostridioides difficile causes life-threatening gastrointestinal infections. It is a high-risk pathogen due to a lack of effective treatments, antimicrobial resistance, and a poorly conserved genomic core. Herein, we report 30 X-ray structures from a structure genomics pipeline spanning 13 years, representing 10.2% of the X-ray structures for this important pathogen.

4.
J Bacteriol ; 204(5): e0055521, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35435721

ABSTRACT

Alpha-pore-forming toxins (α-PFTs) are secreted by many species of bacteria, including Escherichia coli, Aeromonas hydrophila, and Bacillus thuringiensis, as part of their arsenal of virulence factors, and are often cytotoxic. In particular, for α-PFTs, the membrane-spanning channel they form is composed of hydrophobic α-helices. These toxins oligomerize at the surface of target cells and transition from a soluble to a protomer state in which they expose their hydrophobic regions and insert into the membrane to form a pore. The pores may be composed of homooligomers of one component or heterooligomers with two or three components, resulting in bi- or tripartite toxins. The multicomponent α-PFTs are often expressed from a single operon. Recently, motility-associated killing factor A (MakA), an α-PFT, was discovered in Vibrio cholerae. We report that makA is found on the V. cholerae GI-10 genomic island within an operon containing genes for two other potential α-PFTs, MakB and MakE. We determined the X-ray crystal structures for MakA, MakB, and MakE and demonstrated that all three are structurally related to the α-PFT family in the soluble state, and we modeled their protomer state based on the α-PFT AhlB from A. hydrophila. We found that MakA alone is cytotoxic at micromolar concentrations. However, combining MakA with MakB and MakE is cytotoxic at nanomolar concentrations, with specificity for J774 macrophage cells. Our data suggest that MakA, -B, and -E are α-PFTs that potentially act as a tripartite pore-forming toxin with specificity for phagocytic cells. IMPORTANCE The bacterium Vibrio cholerae causes gastrointestinal, wound, and skin infections. The motility-associated killing factor A (MakA) was recently shown to be cytotoxic against colon, prostate, and other cancer cells. However, at the outset of this study, the capacity of MakA to damage cells in combination with other Mak proteins encoded in the same operon had not been elucidated. We determined the structures of three Mak proteins and established that they are structurally related to the α-PFTs. Compared to MakA alone, the combination of all three toxins was more potent specifically in mouse macrophages. This study highlights the idea that the Mak toxins are selectively cytotoxic and thus may function as a tripartite toxin with cell type specificity.


Subject(s)
Vibrio cholerae , Animals , Cytotoxins/genetics , Cytotoxins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genomic Islands , Mice , Pore Forming Cytotoxic Proteins , Protein Subunits/metabolism , Vibrio cholerae/metabolism , Virulence Factors/metabolism
5.
Microbiol Spectr ; 10(2): e0013922, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35195438

ABSTRACT

Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and Neisseria spp. nfsB genes, but not Pasteurella multocida nfsB, allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. IMPORTANCE The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and Neisseria strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Chloramphenicol/metabolism , Chloramphenicol/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Nitroreductases/chemistry , Nitroreductases/genetics , Nitroreductases/metabolism , Oxidoreductases/genetics
6.
ACS Infect Dis ; 7(11): 3062-3076, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34590817

ABSTRACT

Many bacterial pathogens, including Staphylococcus aureus, require inosine 5'-monophosphate dehydrogenase (IMPDH) for infection, making this enzyme a promising new target for antibiotics. Although potent selective inhibitors of bacterial IMPDHs have been reported, relatively few have displayed antibacterial activity. Here we use structure-informed design to obtain inhibitors of S. aureus IMPDH (SaIMPDH) that have potent antibacterial activity (minimal inhibitory concentrations less than 2 µM) and low cytotoxicity in mammalian cells. The physicochemical properties of the most active compounds were within typical Lipinski/Veber space, suggesting that polarity is not a general requirement for achieving antibacterial activity. Five compounds failed to display activity in mouse models of septicemia and abscess infection. Inhibitor-resistant S. aureus strains readily emerged in vitro. Resistance resulted from substitutions in the cofactor/inhibitor binding site of SaIMPDH, confirming on-target antibacterial activity. These mutations decreased the binding of all inhibitors tested, but also decreased catalytic activity. Nonetheless, the resistant strains had comparable virulence to wild-type bacteria. Surprisingly, strains expressing catalytically inactive SaIMPDH displayed only a mild virulence defect. Collectively these observations question the vulnerability of the enzymatic activity of SaIMPDH as a target for the treatment of S. aureus infections, suggesting other functions of this protein may be responsible for its role in infection.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , IMP Dehydrogenase/genetics , Inosine , Mice , Staphylococcal Infections/drug therapy , Staphylococcus aureus
7.
Science ; 373(6557): 931-936, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34285133

ABSTRACT

There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus OC43, Human/drug effects , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Thiazoles/pharmacology , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Benzamides , COVID-19/virology , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus OC43, Human/physiology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Mice , Mice, Transgenic , Microbial Sensitivity Tests , Piperidines , Pyridines , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/therapeutic use , Viral Load/drug effects , Virus Replication/drug effects
8.
Protein Sci ; 30(9): 1904-1918, 2021 09.
Article in English | MEDLINE | ID: mdl-34107106

ABSTRACT

Intracellular growth and pathogenesis of Chlamydia species is controlled by the availability of tryptophan, yet the complete biosynthetic pathway for l-Trp is absent among members of the genus. Some representatives, however, preserve genes encoding tryptophan synthase, TrpAB - a bifunctional enzyme catalyzing the last two steps in l-Trp synthesis. TrpA (subunit α) converts indole-3-glycerol phosphate into indole and glyceraldehyde-3-phosphate (α reaction). The former compound is subsequently used by TrpB (subunit ß) to produce l-Trp in the presence of l-Ser and a pyridoxal 5'-phosphate cofactor (ß reaction). Previous studies have indicated that in Chlamydia, TrpA has lost its catalytic activity yet remains associated with TrpB to support the ß reaction. Here, we provide detailed analysis of the TrpAB from C. trachomatis D/UW-3/CX, confirming that accumulation of mutations in the active site of TrpA renders it enzymatically inactive, despite the conservation of the catalytic residues. We also show that TrpA remains a functional component of the TrpAB complex, increasing the activity of TrpB by four-fold. The side chain of non-conserved ßArg267 functions as cation effector, potentially rendering the enzyme less susceptible to the solvent ion composition. The observed structural and functional changes detected herein were placed in a broader evolutionary and genomic context, allowing identification of these mutations in relation to their trp gene contexts in which they occur. Moreover, in agreement with the in vitro data, partial relaxation of purifying selection for TrpA, but not for TrpB, was detected, reinforcing a partial loss of TrpA functions during the course of evolution.


Subject(s)
Bacterial Proteins/chemistry , Chlamydia trachomatis/enzymology , Protein Subunits/chemistry , Pyridoxal Phosphate/chemistry , Tryptophan Synthase/chemistry , Tryptophan/chemistry , Allosteric Regulation , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Catalytic Domain , Chlamydia trachomatis/chemistry , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Subunits/genetics , Protein Subunits/metabolism , Pyridoxal Phosphate/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Tryptophan/biosynthesis , Tryptophan Synthase/genetics , Tryptophan Synthase/metabolism
9.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-33972410

ABSTRACT

The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.


Subject(s)
RNA Caps/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , SARS-CoV-2/chemistry , Crystallography , Methylation , Methyltransferases/chemistry , Methyltransferases/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , RNA Cap Analogs/chemistry , RNA Cap Analogs/metabolism , RNA Caps/chemistry , RNA, Messenger/chemistry , RNA, Viral/chemistry , S-Adenosylhomocysteine/chemistry , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Synchrotrons , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism
10.
Commun Biol ; 4(1): 193, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564093

ABSTRACT

SARS-CoV-2 Nsp15 is a uridine-specific endoribonuclease with C-terminal catalytic domain belonging to the EndoU family that is highly conserved in coronaviruses. As endoribonuclease activity seems to be responsible for the interference with the innate immune response, Nsp15 emerges as an attractive target for therapeutic intervention. Here we report the first structures with bound nucleotides and show how the enzyme specifically recognizes uridine moiety. In addition to a uridine site we present evidence for a second base binding site that can accommodate any base. The structure with a transition state analog, uridine vanadate, confirms interactions key to catalytic mechanisms. In the presence of manganese ions, the enzyme cleaves unpaired RNAs. This acquired knowledge was instrumental in identifying Tipiracil, an FDA approved drug that is used in the treatment of colorectal cancer, as a potential anti-COVID-19 drug. Using crystallography, biochemical, and whole-cell assays, we demonstrate that Tipiracil inhibits SARS-CoV-2 Nsp15 by interacting with the uridine binding pocket in the enzyme's active site. Our findings provide new insights for the development of uracil scaffold-based drugs.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Endoribonucleases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Thymine/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Catalytic Domain , Crystallography, X-Ray , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Ligands , Models, Molecular , Protein Conformation , Pyrrolidines/chemistry , Pyrrolidines/pharmacokinetics , Thymine/chemistry , Thymine/pharmacokinetics , Uridine/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
11.
bioRxiv ; 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32908976

ABSTRACT

There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.

12.
IUCrJ ; 7(Pt 5): 814-824, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32939273

ABSTRACT

Among 15 nonstructural proteins (Nsps), the newly emerging Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) encodes a large, multidomain Nsp3. One of its units is the ADP-ribose phosphatase domain (ADRP; also known as the macrodomain, MacroD), which is believed to interfere with the host immune response. Such a function appears to be linked to the ability of the protein to remove ADP-ribose from ADP-ribosylated proteins and RNA, yet the precise role and molecular targets of the enzyme remain unknown. Here, five high-resolution (1.07-2.01 Å) crystal structures corresponding to the apo form of the protein and its complexes with 2-(N-morpholino)ethanesulfonic acid (MES), AMP and ADP-ribose have been determined. The protein is shown to undergo conformational changes to adapt to the ligand in the manner previously observed in close homologues from other viruses. A conserved water molecule is also identified that may participate in hydrolysis. This work builds foundations for future structure-based research on ADRP, including the search for potential antiviral therapeutics.

13.
bioRxiv ; 2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32511376

ABSTRACT

SARS-CoV-2 is a member of the coronaviridae family and is the etiological agent of the respiratory Coronavirus Disease 2019. The virus has spread rapidly around the world resulting in over two million cases and nearly 150,000 deaths as of April 17, 2020. Since no treatments or vaccines are available to treat COVID-19 and SARS-CoV-2, respiratory complications derived from the infections have overwhelmed healthcare systems around the world. This virus is related to SARS-CoV-1, the virus that caused the 2002-2004 outbreak of Severe Acute Respiratory Syndrome. In January 2020, the Center for Structural Genomics of Infectious Diseases implemented a structural genomics pipeline to solve the structures of proteins essential for coronavirus replication-transcription. Here we show the first structure of the SARS-CoV-2 nsp10-nsp16 2'-O-methyltransferase complex with S-adenosylmethionine at a resolution of 1.80 Å. This heterodimer complex is essential for capping viral mRNA transcripts for efficient translation and to evade immune surveillance.

14.
Protein Sci ; 29(7): 1596-1605, 2020 07.
Article in English | MEDLINE | ID: mdl-32304108

ABSTRACT

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS-CoVs and Middle East Respiratory Syndrome coronavirus (MERS-CoVs), the detailed information about SARS-CoV-2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high-throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS-CoV-2 proteins and structures. Here we report two high-resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.


Subject(s)
Betacoronavirus/chemistry , Endoribonucleases/chemistry , Middle East Respiratory Syndrome Coronavirus/chemistry , Oligonucleotides/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Betacoronavirus/genetics , Betacoronavirus/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Endoribonucleases/genetics , Endoribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Models, Molecular , Oligonucleotides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
15.
Protein Sci ; 29(3): 779-788, 2020 03.
Article in English | MEDLINE | ID: mdl-31930594

ABSTRACT

Global dispersion of multidrug resistant bacteria is very common and evolution of antibiotic-resistance is occurring at an alarming rate, presenting a formidable challenge for humanity. The development of new therapeuthics with novel molecular targets is urgently needed. Current drugs primarily affect protein, nucleic acid, and cell wall synthesis. Metabolic pathways, including those involved in amino acid biosynthesis, have recently sparked interest in the drug discovery community as potential reservoirs of such novel targets. Tryptophan biosynthesis, utilized by bacteria but absent in humans, represents one of the currently studied processes with a therapeutic focus. It has been shown that tryptophan synthase (TrpAB) is required for survival of Mycobacterium tuberculosis in macrophages and for evading host defense, and therefore is a promising drug target. Here we present crystal structures of TrpAB with two allosteric inhibitors of M. tuberculosis tryptophan synthase that belong to sulfolane and indole-5-sulfonamide chemical scaffolds. We compare our results with previously reported structural and biochemical studies of another, azetidine-containing M. tuberculosis tryptophan synthase inhibitor. This work shows how structurally distinct ligands can occupy the same allosteric site and make specific interactions. It also highlights the potential benefit of targeting more variable allosteric sites of important metabolic enzymes.


Subject(s)
Allosteric Site/drug effects , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Mycobacterium tuberculosis/enzymology , Sulfonamides/pharmacology , Thiophenes/pharmacology , Tryptophan Synthase/antagonists & inhibitors , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Indoles/chemistry , Ligands , Models, Molecular , Molecular Structure , Sulfonamides/chemistry , Thiophenes/chemistry , Tryptophan Synthase/chemistry , Tryptophan Synthase/metabolism
16.
Protein Sci ; 29(3): 695-710, 2020 03.
Article in English | MEDLINE | ID: mdl-31762145

ABSTRACT

Chloramphenicol acetyltransferases (CATs) were among the first antibiotic resistance enzymes identified and have long been studied as model enzymes for examining plasmid-mediated antibiotic resistance. These enzymes acetylate the antibiotic chloramphenicol, which renders it incapable of inhibiting bacterial protein synthesis. CATs can be classified into different types: Type A CATs are known to be important for antibiotic resistance to chloramphenicol and fusidic acid. Type B CATs are often called xenobiotic acetyltransferases and adopt a similar structural fold to streptogramin acetyltransferases, which are known to be critical for streptogramin antibiotic resistance. Type C CATs have recently been identified and can also acetylate chloramphenicol, but their roles in antibiotic resistance are largely unknown. Here, we structurally and kinetically characterized three Vibrio CAT proteins from a nonpathogenic species (Aliivibrio fisheri) and two important human pathogens (Vibrio cholerae and Vibrio vulnificus). We found all three proteins, including one in a superintegron (V. cholerae), acetylated chloramphenicol, but did not acetylate aminoglycosides or dalfopristin. We also determined the 3D crystal structures of these CATs alone and in complex with crystal violet and taurocholate. These compounds are known inhibitors of Type A CATs, but have not been explored in Type B and Type C CATs. Based on sequence, structure, and kinetic analysis, we concluded that the V. cholerae and V. vulnificus CATs belong to the Type B class and the A. fisheri CAT belongs to the Type C class. Ultimately, our results provide a framework for studying the evolution of antibiotic resistance gene acquisition and chloramphenicol acetylation in Vibrio and other species.


Subject(s)
Chloramphenicol O-Acetyltransferase/chemistry , Chloramphenicol O-Acetyltransferase/metabolism , Vibrio/enzymology , Amino Acid Sequence , Chloramphenicol O-Acetyltransferase/genetics , Crystallography, X-Ray , Models, Molecular , Phylogeny , Protein Conformation , Sequence Alignment , Species Specificity , Vibrio/classification
17.
Protein Sci ; 29(3): 723-743, 2020 03.
Article in English | MEDLINE | ID: mdl-31846104

ABSTRACT

Emergence of Enterobacteriaceae harboring metallo-ß-lactamases (MBL) has raised global threats due to their broad antibiotic resistance profiles and the lack of effective inhibitors against them. We have been studied one of the emerging environmental MBL, the L1 from Stenotrophomonas maltophilia K279a. We determined several crystal structures of L1 complexes with three different classes of ß-lactam antibiotics (penicillin G, moxalactam, meropenem, and imipenem), with the inhibitor captopril and different metal ions (Zn+2 , Cd+2 , and Cu+2 ). All hydrolyzed antibiotics and the inhibitor were found binding to two Zn+2 ions mainly through the opened lactam ring and some hydrophobic interactions with the binding pocket atoms. Without a metal ion, the active site is very similarly maintained as that of the native form with two Zn+2 ions, however, the protein does not bind the substrate moxalactam. When two Zn+2 ions were replaced with other metal ions, the same di-metal scaffold was maintained and the added moxalactam was found hydrolyzed in the active site. Differential scanning fluorimetry and isothermal titration calorimetry were used to study thermodynamic properties of L1 MBL compared with New Deli Metallo-ß-lactamase-1 (NDM-1). Both enzymes are significantly stabilized by Zn+2 and other divalent metals but showed different dependency. These studies also suggest that moxalactam and its hydrolyzed form may bind and dissociate with different kinetic modes with or without Zn+2 for each of L1 and NDM-1. Our analysis implicates metal ions, in forming a distinct di-metal scaffold, which is central to the enzyme stability, promiscuous substrate binding and versatile catalytic activity. STATEMENT: The L1 metallo-ß-lactamase from an environmental multidrug-resistant opportunistic pathogen Stenotrophomonas maltophilia K279a has been studied by determining 3D structures of L1 enzyme in the complexes with several ß-lactam antibiotics and different divalent metals and characterizing its biochemical and ligand binding properties. We found that the two-metal center in the active site is critical in the enzymatic process including antibiotics recognition and binding, which explains the enzyme's activity toward diverse antibiotic substrates. This study provides the critical information for understanding the ligand recognition and for advanced drug development.


Subject(s)
Biocatalysis , Metals, Heavy/metabolism , Stenotrophomonas maltophilia/enzymology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites/drug effects , Biocatalysis/drug effects , Lactams/chemistry , Lactams/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Stenotrophomonas maltophilia/drug effects , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacology
18.
Chem Res Toxicol ; 32(3): 456-466, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30746940

ABSTRACT

Reactive nitrogen species (RNS) are produced during infection and inflammation, and the effects of these agents on proteins, DNA, and lipids are well recognized. In contrast, the effects of RNS damaged metabolites are less appreciated. 5-Amino-3-ß-(d-ribofuranosyl)-3 H-imidazo-[4,5- d][1,3]oxazine-7-one (oxanosine) and its nucleotides are products of guanosine nitrosation. Here we demonstrate that oxanosine monophosphate (OxMP) is a potent reversible competitive inhibitor of IMPDH. The value of Ki varies from 50 to 340 nM among IMPDHs from five different organisms. UV spectroscopy and X-ray crystallography indicate that OxMP forms a ring-opened covalent adduct with the active site Cys (E-OxMP*). Unlike the covalent intermediate of the normal catalytic reaction, E-OxMP* does not hydrolyze, but instead recyclizes to OxMP. IMPDH inhibitors block proliferation and can induce apoptosis, so the inhibition of IMPDH by OxMP presents another potential mechanism for RNS toxicity.


Subject(s)
Enzyme Inhibitors/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Phosphates/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , IMP Dehydrogenase/isolation & purification , IMP Dehydrogenase/metabolism , Molecular Structure , Phosphates/chemical synthesis , Phosphates/chemistry , Ribonucleosides/chemical synthesis , Ribonucleosides/chemistry , Ribonucleosides/pharmacology
19.
Nat Chem Biol ; 13(9): 943-950, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28671682

ABSTRACT

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-ß-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.


Subject(s)
Antitubercular Agents , Azetidines/chemistry , Mycobacterium tuberculosis/enzymology , Small Molecule Libraries , Tryptophan Synthase/antagonists & inhibitors , Allosteric Regulation , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Azetidines/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Delivery Systems , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
20.
PLoS One ; 10(10): e0138976, 2015.
Article in English | MEDLINE | ID: mdl-26440283

ABSTRACT

Tuberculosis (TB) remains a worldwide problem and the need for new drugs is increasingly more urgent with the emergence of multidrug- and extensively-drug resistant TB. Inosine 5'-monophosphate dehydrogenase 2 (IMPDH2) from Mycobacterium tuberculosis (Mtb) is an attractive drug target. The enzyme catalyzes the conversion of inosine 5'-monophosphate into xanthosine 5'-monophosphate with the concomitant reduction of NAD+ to NADH. This reaction controls flux into the guanine nucleotide pool. We report seventeen selective IMPDH inhibitors with antitubercular activity. The crystal structures of a deletion mutant of MtbIMPDH2 in the apo form and in complex with the product XMP and substrate NAD+ are determined. We also report the structures of complexes with IMP and three structurally distinct inhibitors, including two with antitubercular activity. These structures will greatly facilitate the development of MtbIMPDH2-targeted antibiotics.


Subject(s)
Antitubercular Agents/pharmacology , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/metabolism , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/metabolism , Binding Sites , Enzyme Inhibitors/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/genetics , Mycobacterium tuberculosis/drug effects , NAD/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...