Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 12(11): 5, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37917086

ABSTRACT

Purpose: Predict central 10° global and local visual field (VF) measurements from macular optical coherence tomography (OCT) volume scans with deep learning (DL). Methods: This study included 1121 OCT volume scans and 10-2 VFs from 289 eyes (257 patients). Macular scans were used to estimate 10-2 VF mean deviation (MD), threshold sensitivities (TS), and total deviation (TD) values at 68 locations. A three-dimensional (3D) convolutional neural network based on the 3D DenseNet121 architecture was used for prediction. We compared DL predictions to those from baseline linear models. We carried out 10-fold stratified cross-validation to optimize generalizability. The performance of the DL and baseline models was compared based on correlations between ground truth and predicted VF measures and mean absolute error (MAE; ground truth - predicted values). Results: Average (SD) MD was -9.3 (7.7) dB. Average (SD) correlations between predicted and ground truth MD and MD MAE were 0.74 (0.09) and 3.5 (0.4) dB, respectively. Estimation accuracy deteriorated with worsening MD. Average (SD) Pearson correlations between predicted and ground truth TS and MAEs for DL and baseline model were 0.71 (0.05) and 0.52 (0.05) (P < 0.001) and 6.5 (0.6) and 7.5 (0.5) dB (P < 0.001), respectively. For TD, correlation (SD) and MAE (SD) for DL and baseline models were 0.69 (0.02) and 0.48 (0.05) (P < 0.001) and 6.1 (0.5) and 7.8 (0.5) dB (P < 0.001), respectively. Conclusions: Macular OCT volume scans can be used to predict global central VF parameters with clinically relevant accuracy. Translational Relevance: Macular OCT imaging may be used to confirm and supplement central VF findings using deep learning.


Subject(s)
Deep Learning , Tomography, Optical Coherence , Humans , Visual Fields , Eye , Neural Networks, Computer
2.
Mol Syst Biol ; 18(8): e11001, 2022 08.
Article in English | MEDLINE | ID: mdl-35965452

ABSTRACT

Quantifying the dependency between mRNA abundance and downstream cellular phenotypes is a fundamental open problem in biology. Advances in multimodal single-cell measurement technologies provide an opportunity to apply new computational frameworks to dissect the contribution of individual genes and gene combinations to a given phenotype. Using an information theory approach, we analyzed multimodal data of the expression of 83 genes in the Ca2+ signaling network and the dynamic Ca2+ response in the same cell. We found that the overall expression levels of these 83 genes explain approximately 60% of Ca2+ signal entropy. The average contribution of each single gene was 17%, revealing a large degree of redundancy between genes. Using different heuristics, we estimated the dependency between the size of a gene set and its information content, revealing that on average, a set of 53 genes contains 54% of the information about Ca2+ signaling. Our results provide the first direct quantification of information content about complex cellular phenotype that exists in mRNA abundance measurements.


Subject(s)
Signal Transduction , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Nat Commun ; 12(1): 2992, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016976

ABSTRACT

Rapid death of infected cells is an important antiviral strategy. However, fast decisions that are based on limited evidence can be erroneous and cause unnecessary cell death and subsequent tissue damage. How cells optimize their death decision making strategy to maximize both speed and accuracy is unclear. Here, we show that exposure to TNF, which is secreted by macrophages during viral infection, causes cells to change their decision strategy from "slow and accurate" to "fast and error-prone". Mathematical modeling combined with experiments in cell culture and whole organ culture show that the regulation of the cell death decision strategy is critical to prevent HSV-1 spread. These findings demonstrate that immune regulation of cellular cognitive processes dynamically changes a tissues' tolerance for self-damage, which is required to protect against viral spread.


Subject(s)
Apoptosis/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Cornea/immunology , Cornea/virology , Disease Models, Animal , Female , Herpes Simplex/virology , Host-Pathogen Interactions/immunology , Humans , Intravital Microscopy , Macrophages/metabolism , Male , Mice , Mice, Knockout , Models, Immunological , NIH 3T3 Cells , Organ Culture Techniques , Primary Cell Culture , Time-Lapse Imaging , Tumor Necrosis Factor-alpha/genetics
4.
Cell Syst ; 12(5): 388-400, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34015260

ABSTRACT

Biological organization crosses multiple spatial scales: from molecular, cellular, to tissues and organs. The proliferation of molecular profiling technologies enables increasingly detailed cataloging of the components at each scale. However, the scarcity of spatial profiling has made it challenging to bridge across these scales. Emerging technologies based on highly multiplexed in situ profiling are paving the way to study the spatial organization of cells and tissues in greater detail. These new technologies provide the data needed to cross the scale from cell biology to physiology and identify the fundamental principles that govern tissue organization. Here, we provide an overview of these key technologies and discuss the current and future insights these powerful techniques enable.


Subject(s)
Cell Biology , Cell Physiological Phenomena , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...