Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 44(12): 4605-4622, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37357976

ABSTRACT

Despite diffusion tensor imaging (DTI) evidence for widespread fractional anisotropy (FA) reductions in the brain white matter of patients with bipolar disorder, questions remain regarding the specificity and sensitivity of FA abnormalities as opposed to other diffusion metrics in the disorder. We conducted a whole-brain voxel-based multicompartment diffusion MRI study on 316 participants (i.e., 158 patients and 158 matched healthy controls) employing four diffusion metrics: the mean diffusivity (MD) and FA estimated from DTI, and the intra-axonal signal fraction (IASF) and microscopic axonal parallel diffusivity (Dpar) derived from the spherical mean technique. Our findings provide novel evidence about widespread abnormalities in other diffusion metrics in BD. An extensive overlap between the FA and IASF results suggests that the lower FA in patients may be caused by a reduced intra-axonal volume fraction or a higher macromolecular content in the intra-axonal water. We also found a diffuse alteration in MD involving white and grey matter tissue and more localised changes in Dpar. A Machine Learning analysis revealed that FA, followed by IASF, were the most helpful metric for the automatic diagnosis of BD patients, reaching an accuracy of 72%. Number of mood episodes, age of onset/duration of illness, psychotic symptoms, and current treatment with lithium, antipsychotics, antidepressants, and antiepileptics were all significantly associated with microstructure abnormalities. Lithium treatment was associated with less microstructure abnormality.


Subject(s)
Antipsychotic Agents , Bipolar Disorder , White Matter , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging , White Matter/diagnostic imaging , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use
2.
J Clin Psychopharmacol ; 28(5): 523-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18794647

ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a widely abused substituted amphetamine. MDMA is predominantly O-demethylenated in humans by cytochrome P450 isoforms 2D6 and 1A2 (CYP2D6 and CYP CYP1A2, respectively). MDMA is also a mechanism-based inhibitor of CYP2D6. A controlled clinical trial was conducted in 15 healthy male subjects whereby a probe drug, dextromethorphan (DEX), was administered after an oral dose of 1.5 mg/kg MDMA. The pharmacokinetics of DEX and its metabolites were used to evaluate changes in CYP2D6 activity. The urinary metabolic ratio of DEX and dextrorphan was used to calculate a recovery half-life of CYP2D6. After MDMA, DEX Cmax and area under the curve increased approximately 10-fold with corresponding decreases in dextrorphan pharmacokinetic parameters. The metabolic ratio increased almost 100-fold from 0.0061 +/- 0.0056 to 0.4322 +/- 0.2848 after MDMA administration, with 67% of the subjects having a value greater than the antimode of 0.3 for assigning the poor metabolizer phenotype. CYP2D6 activity recovered after 10 days with a recovery half-life of 46.6 hours. In addition to the possible long-term serotonergic effects of MDMA, users must be warned of the consequences of such an inhibition.


Subject(s)
Cytochrome P-450 CYP2D6/drug effects , Enzyme Inhibitors/pharmacology , Hallucinogens/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Adult , Area Under Curve , Cytochrome P-450 CYP2D6/metabolism , Dextromethorphan/pharmacokinetics , Dextrorphan/pharmacokinetics , Half-Life , Humans , Male , Phenotype , Pilot Projects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...