Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotoxicology ; 16(4): 425-449, 2022 05.
Article in English | MEDLINE | ID: mdl-35867661

ABSTRACT

The growing number of nanomaterials-based-products ranging from agriculture to cosmetics to medical, and so on, increases the amount of exposure, compelling researchers to include safety and health protocols in each developed nano-product to ensure consumer safety. As a result, emphasizing the importance of novel nanomaterials' toxicological and safety profiles, as well as their product quality enhancement, is critical. As a result, research efforts must be directed toward developing new nanomaterials in a safer-by-design manner. Chitosan functionalization is an excellent option for this because it is already known for its nontoxicity, biodegradability, and biocompatibility. In this review, we hope to uncover the toxicological consequences of nanomaterials and the potential role of chitosan functionalization in mitigating them. This is an effort to create an environmentally friendly and safe nano-product, ensuring tomorrow's sustainability.


Subject(s)
Chitosan , Cosmetics , Nanostructures , Carbon , Metals/toxicity , Nanostructures/toxicity
2.
Sci Rep ; 10(1): 22323, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339951

ABSTRACT

The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.


Subject(s)
Chitosan/pharmacology , Fungicides, Industrial/pharmacology , Nanoparticles/chemistry , Pesticides/pharmacology , Chitosan/chemistry , Fungicides, Industrial/chemistry , Ganoderma/drug effects , Ganoderma/pathogenicity , Palm Oil/chemistry , Pesticides/chemistry , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/microbiology , Triazoles/chemistry , Triazoles/pharmacology
3.
Pharmaceutics ; 12(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486034

ABSTRACT

Health risks which result from exposure to pesticides have sparked awareness among researchers, triggering the idea of developing nanoencapsulation pesticides with the aim to enhance cytoprotection as well as genoprotection of the pesticides. In addition, nanocapsules of pesticides have slow release capability, high bioavailability, and site-specific delivery, which has attracted great interest from researchers. Hence, the objective of this work is to synthesize a nanoformulation of a fungicide of different sizes, namely, chitosan-hexaconazole nanoparticles (18 nm), chitosan-dazomet nanoparticles (7 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 nm), which were then subjected to toxicological evaluations, including cytotoxicity, genotoxicity, cell death assay, and dermal irritation assays. Incubation of chitosan-based nanofungicides with V79-4 hamster lung cell did not reveal cytotoxicity or genotoxicity, potentially suggesting that encapsulation with chitosan reduces direct toxicity of the toxic fungicides. Meanwhile, pure fungicide revealed its high cytotoxic effect on V79-4 hamster lung cells. In addition, dermal exposure assessment on rabbits revealed that chitosan-hexaconazole nanoparticles are classified under corrosive subcategory 1C, while chitosan-dazomet nanoparticles are classified under corrosive subcategory 1B. Moreover, both chitosan-hexaconazole nanoparticles and chitosan-dazomet nanoparticles are classified as causing mild irritation.

4.
Molecules ; 25(7)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244664

ABSTRACT

The rise in the World's food demand in line with the increase of the global population has resulted in calls for more research on the production of sustainable food and sustainable agriculture. A natural biopolymer, chitosan, coupled with nanotechnology could offer a sustainable alternative to the use of conventional agrochemicals towards a safer agriculture industry. Here, we review the potential of chitosan-based agronanochemicals as a sustainable alternative in crop protection against pests, diseases as well as plant growth promoters. Such effort offers better alternatives: (1) the existing agricultural active ingredients can be encapsulated into chitosan nanocarriers for the formation of potent biocides against plant pathogens and pests; (2) the controlled release properties and high bioavailability of the nanoformulations help in minimizing the wastage and leaching of the agrochemicals' active ingredients; (3) the small size, in the nanometer regime, enhances the penetration on the plant cell wall and cuticle, which in turn increases the argochemical uptake; (4) the encapsulation of agrochemicals in chitosan nanocarriers shields the toxic effect of the free agrochemicals on the plant, cells and DNA, thus, minimizing the negative impacts of agrochemical active ingredients on human health and environmental wellness. In addition, this article also briefly reviews the mechanism of action of chitosan against pathogens and the elicitations of plant immunity and defense response activities of chitosan-treated plants.


Subject(s)
Agrochemicals/chemistry , Chitosan/chemistry , Crop Protection , Crops, Agricultural , Nanotechnology , Agrochemicals/administration & dosage , Agrochemicals/adverse effects , Agrochemicals/pharmacology , Biopolymers , Drug Carriers , Health Impact Assessment , Humans , Nanostructures , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Protective Agents/chemistry , Protective Agents/pharmacology
5.
J Agric Food Chem ; 68(15): 4305-4314, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32227887

ABSTRACT

The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by Ganoderma boninense in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal Ganoderma boninense mycelium. The results revealed that chitosan nanoparticles could act as dual modes of action, which are themselves as a biocide or as a nanocarrier for the existing fungicides. In addition, the particle size of the chitosan-based agronanofungicides plays a crucial role in suppressing and controlling the disease. The synergistic effect of the double-fungicide system of 5 nm chitosan-hexaconazole-dazomet nanoparticles can be observed as the system showed the highest disease reduction with 74.5%, compared to the untreated infected seedlings.


Subject(s)
Chitosan/chemistry , Fungicides, Industrial/pharmacology , Ganoderma/drug effects , Triazoles/pharmacology , Drug Carriers/chemistry , Drug Compounding , Fungicides, Industrial/chemistry , Ganoderma/physiology , Nanoparticles/chemistry , Plant Diseases/microbiology , Plant Stems/microbiology , Thiadiazines/chemistry , Thiadiazines/pharmacology , Triazoles/chemistry
6.
PLoS One ; 15(4): e0231315, 2020.
Article in English | MEDLINE | ID: mdl-32315346

ABSTRACT

Although fungicides could be the best solution in combating fungal infections in crops, however, the phytotoxic level of fungicides to the crops should be tested first to ensure that it is safe for the crops. Moreover, nanocarrier systems of fungicides could play a significant role in the advancement of crop protection. For this reason, chitosan was chosen in the present study as a nanocarrier for fungicides of hexaconazole and/or dazomet in the development of a new generation of agronanofungicides with a high antifungal potent agent and no phytotoxic effect. Hence, the encapsulation of fungicides into the non-toxic biopolymer, chitosan was aims to reduce the phytotoxic level of fungicides. In the present study, the in vivo phytotoxicity of chitosan-fungicides nanoparticles on the physiological and vegetative growth of oil palm seedlings was evaluated in comparison to its pure fungicides as well as the conventional fungicides. The results revealed the formation of chitosan-fungicides nanoparticles could reduce the phytotoxic effect on oil palm seedlings compared to their counterparts, pure fungicides. The chitosan-fungicides nanoparticles were seen to greatly reduce the phytotoxic effect compared to the conventional fungicides with the same active ingredient.


Subject(s)
Arecaceae/drug effects , Chitosan/chemistry , Crop Protection , Fungicides, Industrial/toxicity , Plant Diseases/prevention & control , Seedlings/drug effects , Arecaceae/growth & development , Fungicides, Industrial/chemistry , Nanoparticles/chemistry , Nanoparticles/toxicity , Seedlings/growth & development , Thiadiazines/chemistry , Thiadiazines/toxicity , Triazoles/chemistry , Triazoles/toxicity
7.
Molecules ; 24(13)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288497

ABSTRACT

Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.


Subject(s)
Arecaceae/microbiology , Chitosan/chemistry , Drug Carriers/chemistry , Fungicides, Industrial/pharmacology , Ganoderma/drug effects , Nanoparticles/chemistry , Plant Diseases/microbiology , Triazoles/pharmacology , Cross-Linking Reagents/chemistry , Drug Liberation , Kinetics , Particle Size , Polyphosphates/chemistry
8.
Int J Mol Sci ; 20(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067720

ABSTRACT

The use of nanotechnology could play a significant role in the agriculture sector, especially in the preparation of new-generation agronanochemicals. Currently, the economically important plant of Malaysia, the oil palm, faces the threat of a devastating disease which is particularly caused by a pathogenic fungus, Ganoderma boninense. For the development of an effective antifungal agent, a series of chitosan nanoparticles loaded with a fumigant, dazomet, were prepared using various concentrations of sodium tripolyphosphate (TPP)-2.5, 5, 10, and 20 mg/mL, abbreviated as CDEN2.5, CDEN5, CDEN10, and CDEN20, respectively. The effect of TPP as a crosslinking agent on the resulting particle size of the synthesized nanoparticles was investigated using a particle size analyzer and high-resolution transmission electron microscopy (HRTEM). Both methods confirmed that increasing the TPP concentration resulted in smaller particles. In addition, in vitro fumigant release at pH 5.5 showed that the release of the fumigant from the nanoparticles was of a sustained manner, with a prolonged release time up to 24 h. Furthermore, the relationship between the chitosan-dazomet nanoparticles and the in vitro antifungal activity against G. boninense was also explored, where the nanoparticles of the smallest size, CDEN20, gave the highest antifungal efficacy with the lowest half maximum effective concentration (EC50) value of 13.7 ± 1.76 ppb. This indicates that the smaller-sized agronanoparticles were more effective as an antifungal agent. The size can be altered, which plays a crucial role in combatting the Ganoderma disease. The agronanoparticles have controlled release properties and high antifungal efficacy on G. boninense, thus making them a promising candidate to be applied in the field for Ganoderma treatment.


Subject(s)
Antifungal Agents/chemistry , Chitosan/analogs & derivatives , Ganoderma/drug effects , Nanoparticles/chemistry , Thiadiazines/chemistry , Antifungal Agents/pharmacology
9.
RSC Adv ; 9(46): 27083-27095, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-35528577

ABSTRACT

The excessive use of fungicides may be of environmental and health concerns. Hence, to overcome this problem, chitosan as a controlled release matrix was used in this work to encapsulate the fungicide for the development of enhanced fungicide nanodelivery system. In this proposed study, dual-loaded fungicides (hexaconazole and dazomet) were simultaneously encapsulated into chitosan nanoparticles as an antifungal agent on Ganoderma boninense (G. boninense). In this work, we report the synthesis and characterization of the nanoparticles prepared using various concentrations of the crosslinking agent of sodium tripolyphosphate (TPP); 2.5, 5, 10, and 20 mg mL-1, which resulted in the nanoparticles of CHDEN2.5, CHDEN5, CHDEN10, and CHDEN20, respectively. The effect of TPP on the synthesized nanoparticle size revealed that an increase of TPP resulted in smaller particles, which in turn play a crucial role in controlling G. boninense growth. CHDEN20 shows the highest antifungal efficacy with the lowest half-maximal effective concentration (EC50) on G. boninense. The formulated nanocarrier system of fungicide aims to enhance the efficient delivery of the active ingredients to the target site, able to sustain in it for a longer time, and consequently improve the fungicide efficacy in combating the basal stem rot disease in oil palm.

SELECTION OF CITATIONS
SEARCH DETAIL
...