Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 38(12): 3443-3451, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31422749

ABSTRACT

Two new 10-methoxydibenzo[b,h][1,6]naphthyridine-2-carboxamide derivatives (R1 and R2) have been synthesized and characterized using different spectral techniques. The binding of these probes with DNA was investigated using spectral (Electronic, fluorescence, 1H NMR and circular dichroism) and molecular docking studies. These probes exhibited a strong fluorescence around 440 nm upon excitation around 380 nm. Electronic and competitive fluorescence titration studies, in HEPES [(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)] buffer/dimethyl sulfoxide (pH 7.4) medium, suggest that these probes bind strongly to DNA, which is substantiated by 1H NMR study. The binding constants are calculated to be 5.3 × 107 and 6.8 × 106 M-1 for R1 and R2, respectively. From the results of spectral studies, it is proposed that the mechanism of binding of these probes with DNA is through minor groove binding mode, which is further confirmed by circular dichroism and molecular docking studies. Initial cell viability screening using MTT (3-[4,5-methylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay shows that normal Vero cells are viable towards these probes at nano molar concentration, which is the concentration range employed in the present study for DNA staining (IC50 in the order of 0.023 mM). The enhancement in fluorescence intensity of these probes upon binding with DNA enables the staining of DNA in agarose gel in gel electrophoresis experiment. The sensitivity of these probes is comparable with that of ethidium bromide and DNA amounts as low as 4 nano gram are detectable.Communicated by Ramaswamy H. Sarma.


Subject(s)
DNA , Fluorescent Dyes , Animals , Chlorocebus aethiops , Molecular Docking Simulation , Naphthyridines , Spectrometry, Fluorescence , Staining and Labeling , Vero Cells
2.
Ann Neurol ; 82(3): 429-443, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28843047

ABSTRACT

OBJECTIVE: Loss of cognition even after survival is the salient feature of cerebral malaria (CM). Currently, the fate of neuronal morphology is not studied at the ultrastructural level in CM. Recent studies suggest that maintenance of neuronal morphology and dendritic spine density (actin dynamics in particular) are essential for proper cognitive function. LIMK-1/cofilin-1 signaling pathway is known to be involved in the maintenance of actin dynamics through regulation of cofilin-1, and in executing learning and memory functions. METHODS: Using an experimental mouse model, we analyzed the behavioral parameters of asymptomatic mice with CM by performing a rapid murine coma and behavior scale experiment. We performed Golgi-Cox staining to assess neuronal morphology, dendritic spine density, and arborization in brain cortex subjected to Plasmodium berghei ANKA infection compared to asymptomatic, anemic, and control groups. We studied the neural gene expression pattern of LIMK-1, cofilin-1, and ß-actin in all the experimental groups by semiquantitative and quantitative polymerase chain reaction followed by immunoblotting and immunofluorescence. RESULTS: We observed significant loss of dendritic spine density, abnormal spine morphology, reduced dendritic arborization, and extensive dendritic varicosities in the cortical neurons of CM-infected brain. Furthermore, these observations correlated with diminished protein levels of LIMK-1, cofilin-1, phospho-cofilin-1, and ß-actin in the whole brain lysates as well as formation of actin-cofilin rods in the brain sections of symptomatic mice with CM. INTERPRETATION: Overall, our findings suggest that the altered neuronal morphology and dysregulation of LIMK-1/cofilin-1 pathway could affect the cognitive outcome after experimental CM. Therefore, this study could help to establish newer therapeutic strategies addressing long-term cognitive impairment after CM. Ann Neurol 2017;82:429-443.


Subject(s)
Cerebral Cortex/metabolism , Cofilin 1/metabolism , Lim Kinases/metabolism , Malaria, Cerebral/metabolism , Neurons/metabolism , Signal Transduction/physiology , Actins/metabolism , Animals , Cell Shape/physiology , Cerebral Cortex/pathology , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Malaria, Cerebral/pathology , Mice , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...