Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 8(1)2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29385067

ABSTRACT

The review describes the technologies used in the field of breath analysis to diagnose and monitor diabetes mellitus. Currently the diagnosis and monitoring of blood glucose and ketone bodies that are used in clinical studies involve the use of blood tests. This method entails pricking fingers for a drop of blood and placing a drop on a sensitive area of a strip which is pre-inserted into an electronic reading instrument. Furthermore, it is painful, invasive and expensive, and can be unsafe if proper handling is not undertaken. Human breath analysis offers a non-invasive and rapid method for detecting various volatile organic compounds thatare indicators for different diseases. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetoacetate, beta-hydroxybutyrate and acetone. Acetone is exhaled during respiration. The production of acetone is a result of the body metabolising fats instead of glucose to produce energy. There are various techniques that are used to analyse exhaled breath including Gas Chromatography Mass Spectrometry (GC-MS), Proton Transfer Reaction Mass Spectrometry (PTR-MS), Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS), laser photoacoustic spectrometry and so on. All these techniques are not portable, therefore this review places emphasis on how nanotechnology, through semiconductor sensing nanomaterials, has the potential to help individuals living with diabetes mellitus monitor their disease with cheap and portable devices.

2.
Int J Biol Macromol ; 77: 131-42, 2015.
Article in English | MEDLINE | ID: mdl-25797405

ABSTRACT

Films of a biodegradable PLA/PBSA blend and blend-composites containing 2wt% of C20A, C30B and MEE were prepared by solvent casting and spin coating. The films were incubated in vials containing Tris-HCl buffer with Proteinase K, and their weight losses were measured after enzymatic degradation. The surface morphology before and after degradation tests was studied by SEM and in situ AFM. The results showed that neat PLA had a lower percentage weight loss than neat PBSA, whereas blending them resulted in an increased weight loss. The incorporation of C20A into the as-prepared blend accelerated the degradation rate, whereas C30B and MEE decelerated the degradation rate. Annealing at 70°C reduced the degradation rate of the blend, and the presence of nanoclays further reduced the degradation rates. Annealing at 120°C dramatically decelerated the degradation of the blend, whereas the incorporation of nanoclays accelerated the degradations rates. The enhancement of the degradation rates in the presence of nanoclays indicated that the degradation rates were mainly controlled by the PLA matrix. Thin films were also cast onto a silicon substrate using a spin coater, and enzymatic degradation on the completely crystalline surfaces revealed that enzymatic attack occurred by pitting and surface erosion of the thin films.


Subject(s)
Adipates/chemistry , Aluminum Silicates/chemistry , Biocompatible Materials/chemistry , Endopeptidase K/metabolism , Nanocomposites/chemistry , Polyesters/chemistry , Succinates/chemistry , Biocompatible Materials/metabolism , Clay , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...