Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2805, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555285

ABSTRACT

The multi-cohort phase 2 trial NCT02203513 was designed to evaluate the clinical activity of the CHK1 inhibitor (CHK1i) prexasertib in patients with breast or ovarian cancer. Here we report the activity of CHK1i in platinum-resistant high-grade serous ovarian carcinoma (HGSOC) with measurable and biopsiable disease (cohort 5), or without biopsiable disease (cohort 6). The primary endpoint was objective response rate (ORR). Secondary outcomes were safety and progression-free survival (PFS). 49 heavily pretreated patients were enrolled (24 in cohort 5, 25 in cohort 6). Among the 39 RECISTv1.1-evaluable patients, ORR was 33.3% in cohort 5 and 28.6% in cohort 6. Primary endpoint was not evaluable due to early stop of the trial. The median PFS was 4 months in cohort 5 and 6 months in cohort 6. Toxicity was manageable. Translational research was an exploratory endpoint. Potential biomarkers were investigated using pre-treatment fresh biopsies and serial blood samples. Transcriptomic analysis revealed high levels of DNA replication-related genes (POLA1, POLE, GINS3) associated with lack of clinical benefit [defined post-hoc as PFS < 6 months]. Subsequent preclinical experiments demonstrated significant cytotoxicity of POLA1 silencing in combination with CHK1i in platinum-resistant HGSOC cell line models. Therefore, POLA1 expression may be predictive for CHK1i resistance, and the concurrent POLA1 inhibition may improve the efficacy of CHK1i monotherapy in this hard-to-treat population, deserving further investigation.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Pyrazines , Female , Humans , BRCA1 Protein/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromosomal Proteins, Non-Histone
2.
J Clin Invest ; 134(7)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271119

ABSTRACT

Loss of BRCA2 (breast cancer 2) is lethal for normal cells. Yet it remains poorly understood how, in BRCA2 mutation carriers, cells undergoing loss of heterozygosity overcome the lethality and undergo tissue-specific neoplastic transformation. Here, we identified mismatch repair gene mutL homolog 1 (MLH1) as a genetic interactor of BRCA2 whose overexpression supports the viability of Brca2-null cells. Mechanistically, we showed that MLH1 interacts with Flap endonuclease 1 (FEN1) and competes to process the RNA flaps of Okazaki fragments. Together, they restrained the DNA2 nuclease activity on the reversed forks of lagging strands, leading to replication fork (RF) stability in BRCA2-deficient cells. In these cells, MLH1 also attenuated R-loops, allowing the progression of stable RFs, which suppressed genomic instability and supported cell viability. We demonstrated the significance of their genetic interaction by the lethality of Brca2-mutant mice and inhibition of Brca2-deficient tumor growth in mice by Mlh1 loss. Furthermore, we described estrogen as inducing MLH1 expression through estrogen receptor α (ERα), which might explain why the majority of BRCA2 mutation carriers develop ER-positive breast cancer. Taken together, our findings reveal a role of MLH1 in relieving replicative stress and show how it may contribute to the establishment of BRCA2-deficient breast tumors.


Subject(s)
BRCA2 Protein , Mammary Neoplasms, Animal , Animals , Mice , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , DNA Mismatch Repair , DNA Replication
3.
Cell Rep Methods ; 3(11): 100628, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37922907

ABSTRACT

Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.


Subject(s)
Genes, BRCA2 , Ovarian Neoplasms , Humans , Female , Male , Animals , Mice , Mouse Embryonic Stem Cells , Ovarian Neoplasms/genetics , BRCA2 Protein/genetics
4.
PLoS Genet ; 19(9): e1010940, 2023 09.
Article in English | MEDLINE | ID: mdl-37713444

ABSTRACT

The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.


Subject(s)
Breast Neoplasms , Gene Editing , Animals , Humans , Mice , Female , Virulence , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Exons/genetics , Codon , Nucleotides , Breast Neoplasms/genetics , Genetic Predisposition to Disease , BRCA1 Protein/genetics
5.
Front Allergy ; 4: 1126012, 2023.
Article in English | MEDLINE | ID: mdl-37470031

ABSTRACT

Introduction: Immunophenotyping, which is the identification of immune cell subsets based on antigen expression, is an integral technique used to determine changes of cell composition and activation in various disease states or as a response to different stimuli. As nanoparticles are increasingly utilized for diagnostic and therapeutic applications, it is important to develop methodology that allows for the evaluation of their immunological impact. Therefore, the development of techniques such as immunophenotyping are desirable. Currently, the most common technique used to perform immunophenotyping is multicolor flow cytometry. Methods: We developed two distinct multicolor flow cytometry immunophenotyping panels which allow for the evaluation of the effects of nanoparticles on the composition and activation status of treated human peripheral blood mononuclear cells. These two panels assess the presence of various lymphoid and myeloid-derived cell populations as well as aspects of their activation statuses-including proliferation, adhesion, co-stimulation/presentation, and early activation-after treatment with controls or nanoparticles. To conduct assay performance qualification and determine the applicability of this method to preclinical characterization of nanoparticles, we used clinical-grade nanoformulations (AmBisome, Doxil and Feraheme) and research-grade PAMAM dendrimers of different sizes (G3, G4 and G5) and surface functionalities (amine-, carboxy- and hydroxy-). Results and Discussion: We found that formulations possessing intrinsic fluorescent properties (e.g., Doxil and AmBisome) interfere with accurate immunophenotyping; such interference may be partially overcome by dilution. In the absence of interference (e.g., in the case of dendrimers), nanoparticle size and surface functionalities determine their effects on the cells with large amine-terminated dendrimers being the most reactive.

6.
NAR Cancer ; 5(3): zcad032, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37388539

ABSTRACT

The hypoxic milieu is a critical modulator of aerobic glycolysis, yet the regulatory mechanisms between the key glycolytic enzymes in hypoxic cancer cells are largely unchartered. In particular, the M2 isoform of pyruvate kinase (PKM2), the rate-limiting enzyme of glycolysis, is known to confer adaptive advantages under hypoxia. Herein, we report that non-canonical PKM2 mediates HIF-1α and p300 enrichment at PFKFB3 hypoxia-responsive elements (HREs), causing its upregulation. Consequently, the absence of PKM2 activates an opportunistic occupancy of HIF-2α, along with acquisition of a poised state by PFKFB3 HREs-associated chromatin. This poised nature restricts HIF-2α from inducing PFKFB3 while permitting the maintenance of its basal-level expression by harboring multiple histone modifications. In addition, the clinical relevance of the study has been investigated by demonstrating that Shikonin blocks the nuclear translocation of PKM2 to suppress PFKFB3 expression. Furthermore, TNBC patient-derived organoids and MCF7 cells-derived xenograft tumors in mice exhibited substantial growth inhibition upon shikonin treatment, highlighting the vitality of targeting PKM2. Conclusively, this work provides novel insights into the contributions of PKM2 in modulating hypoxic transcriptome and a previously unreported poised epigenetic strategy exhibited by the hypoxic breast cancer cells for ensuring the maintenance of PFKFB3 expression.

7.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33465055

ABSTRACT

The effectiveness of virus-specific strategies, including administered HIV-specific mAbs, to target cells that persistently harbor latent, rebound-competent HIV genomes during combination antiretroviral therapy (cART) has been limited by inefficient induction of viral protein expression. To examine antibody-mediated viral reservoir targeting without a need for viral induction, we used an anti-CD4 mAb to deplete both infected and uninfected CD4+ T cells. Ten rhesus macaques infected with barcoded SIVmac239M received cART for 93 weeks starting 4 days after infection. During cART, 5 animals received 5 to 6 anti-CD4 antibody administrations and CD4+ T cell populations were then allowed 1 year on cART to recover. Despite profound CD4+ T cell depletion in blood and lymph nodes, time to viral rebound following cART cessation was not significantly delayed in anti-CD4-treated animals compared with controls. Viral reactivation rates, determined based on rebounding SIVmac239M clonotype proportions, also were not significantly different in CD4-depleted animals. Notably, antibody-mediated depletion was limited in rectal tissue and negligible in lymphoid follicles. These results suggest that, even if robust viral reactivation can be achieved, antibody-mediated viral reservoir depletion may be limited in key tissue sites.


Subject(s)
Anti-Retroviral Agents/administration & dosage , Antibodies, Viral/administration & dosage , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/immunology , Animals , Anti-HIV Agents/administration & dosage , Antibodies, Monoclonal/administration & dosage , CD4 Antigens/antagonists & inhibitors , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Female , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Humans , Lymphocyte Depletion , Lymphoid Tissue/immunology , Lymphoid Tissue/virology , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/physiology , Viral Load/drug effects , Viral Load/immunology , Virus Activation/drug effects , Virus Activation/immunology , Virus Replication/drug effects , Virus Replication/immunology
8.
JCI Insight ; 4(11)2019 06 06.
Article in English | MEDLINE | ID: mdl-31167974

ABSTRACT

Reduction/elimination of HIV-1 reservoirs that persist despite combination antiretroviral therapy (cART) will likely require induction of viral expression by residual infected cells and enhanced clearance of these cells. TLR7 agonists have potential to mediate these activities. We evaluated immunologic and virologic effects of repeated doses of the TLR7 agonist GS-9620 in SIV-infected rhesus macaques receiving cART, which was initiated at 13 days after infection and was continued for 75 weeks prior to GS-9620 administration. During cART, GS-9620 induced transient upregulation of IFN-stimulated genes in blood and tissues, increases in plasma cytokines, and changes in immune cell population activation and phenotypes but did not result in measurable increases in plasma viremia or viral RNA-to-viral DNA ratio in PBMCs or tissues nor decreases in viral DNA in PBMC or tissues. SIV-specific CD8+ T cell responses, negligible prior to GS-9620 treatment, were not measurably boosted by treatment; a second course of GS-9620 administration overlapping with later cART discontinuation was associated with increased CD8+ T cell responses during viral recrudescence. These results confirm and extend evidence for GS-9620-mediated enhancement of antiviral immune responses in SIV-infected macaques but suggest that GS-9620-mediated viral induction may depend critically on the timing of initiation and duration of cART and resulting characteristics of viral reservoirs.


Subject(s)
Anti-Retroviral Agents , Pteridines , Simian Acquired Immunodeficiency Syndrome , Toll-Like Receptor 7/agonists , Viremia , Animals , Anti-Retroviral Agents/administration & dosage , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Drug Therapy, Combination , Macaca mulatta , Male , Pteridines/administration & dosage , Pteridines/pharmacology , Pteridines/therapeutic use , RNA, Viral/genetics , RNA, Viral/metabolism , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Up-Regulation/drug effects , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
9.
Poult Sci ; 94(4): 612-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25667427

ABSTRACT

Commercial poultry is an important agricultural industry worldwide. Although dense living conditions and large flocks increase meat and egg production, they also increase the risk of disease outbreaks and zoonoses. Current pathogen identification methods mostly rely on culture-dependent techniques and, therefore, are limited to a very small number of bacteria present in the environment. Next Generation Sequencing allows for culture-independent characterization of lower respiratory microbiome of birds including the identification of novel commensals and potentially emerging pathogens. In this study, we collected tracheo-bronchoalveolar lavage of 14 birds raised at 3 different farms in the Punjab province of Pakistan. To characterize the lower respiratory microbiome of these birds, we sequenced hyper-variable regions of the 16S ribosomal subunit gene. Although dominated by bacteria belonging to a small number of taxonomic classifications, the lower respiratory microbiome from each farm was far more diverse and novel than previously known. The differences in microbiome among farms suggest that inter-farm differences affect the microbiome of birds more than breed, geographic location, or management system. The presence of potential and known pathogens in genetically similar specialty breeds of chickens kept at unnaturally high densities and under variable conditions presents an extraordinary opportunity for the selection of highly pathogenic bacteria. In some instances, opportunistic respiratory pathogens were observed in apparently healthy birds. Understanding and monitoring the respiratory microbiome of such populations may allow the early detection of future disease threats.


Subject(s)
Bacteria/classification , Chickens/microbiology , Microbiota , Animals , Bacteria/isolation & purification , Bronchoalveolar Lavage/veterinary , DNA, Bacterial/genetics , Female , High-Throughput Nucleotide Sequencing/veterinary , Lung/microbiology , Male , Molecular Sequence Data , Pakistan , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/veterinary , Trachea/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...