Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 16(9): 4144-4176, 2021 09.
Article in English | MEDLINE | ID: mdl-34373652

ABSTRACT

Capture Hi-C is widely used to obtain high-resolution profiles of chromosomal interactions involving, at least on one end, regions of interest such as gene promoters. Signal detection in Capture Hi-C data is challenging and cannot be adequately accomplished with tools developed for other chromosome conformation capture methods, including standard Hi-C. Capture Hi-C Analysis of Genomic Organization (CHiCAGO) is a computational pipeline developed specifically for Capture Hi-C analysis. It implements a statistical model accounting for biological and technical background components, as well as bespoke normalization and multiple testing procedures for this data type. Here we provide a step-by-step guide to the CHiCAGO workflow that is aimed at users with basic experience of the command line and R. We also describe more advanced strategies for tuning the key parameters for custom experiments and provide guidance on data preprocessing and downstream analysis using companion tools. In a typical experiment, CHiCAGO takes ~2-3 h to run, although pre- and postprocessing steps may take much longer.


Subject(s)
Chromosomes/physiology , Models, Statistical , Software , Chromatin/chemistry
2.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33836156

ABSTRACT

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Subject(s)
COVID-19 Drug Treatment , DNA Topoisomerases, Type I/metabolism , SARS-CoV-2/metabolism , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Animals , COVID-19/enzymology , COVID-19/pathology , Chlorocebus aethiops , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Inflammation/virology , Mesocricetus , Mice , Mice, Transgenic , THP-1 Cells , Vero Cells
3.
bioRxiv ; 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33299999

ABSTRACT

The ongoing pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro and in vivo analyses, we report that Topoisomerase 1 (Top1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of Topotecan (TPT), a FDA-approved Top1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as four days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of Top1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing Top1 inhibitors for COVID-19 in humans.

4.
Cell Rep ; 32(3): 107929, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32698000

ABSTRACT

It is currently assumed that 3D chromosomal organization plays a central role in transcriptional control. However, depletion of cohesin and CTCF affects the steady-state levels of only a minority of transcripts. Here, we use high-resolution Capture Hi-C to interrogate the dynamics of chromosomal contacts of all annotated human gene promoters upon degradation of cohesin and CTCF. We show that a majority of promoter-anchored contacts are lost in these conditions, but many contacts with distinct properties are maintained, and some new ones are gained. The rewiring of contacts between promoters and active enhancers upon cohesin degradation associates with rapid changes in target gene transcription as detected by SLAM sequencing (SLAM-seq). These results provide a mechanistic explanation for the limited, but consistent, effects of cohesin and CTCF depletion on steady-state transcription and suggest the existence of both cohesin-dependent and -independent mechanisms of enhancer-promoter pairing.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Enhancer Elements, Genetic/genetics , Promoter Regions, Genetic , Chromatin , DNA-Binding Proteins/metabolism , Gene Expression Regulation , HeLa Cells , Humans , Transcription, Genetic , Cohesins
5.
Life Sci Alliance ; 3(1)2020 01.
Article in English | MEDLINE | ID: mdl-31818883

ABSTRACT

The enormous amount of freely accessible functional genomics data is an invaluable resource for interrogating the biological function of multiple DNA-interacting players and chromatin modifications by large-scale comparative analyses. However, in practice, interrogating large collections of public data requires major efforts for (i) reprocessing available raw reads, (ii) incorporating quality assessments to exclude artefactual and low-quality data, and (iii) processing data by using high-performance computation. Here, we present qcGenomics, a user-friendly online resource for ultrafast retrieval, visualization, and comparative analysis of tens of thousands of genomics datasets to gain new functional insight from global or focused multidimensional data integration.


Subject(s)
Data Visualization , Electronic Data Processing/methods , Genomics/methods , Information Storage and Retrieval/methods , Chromatin Assembly and Disassembly/genetics , Databases, Genetic , Histone Code/genetics , Histones/genetics , Humans , MCF-7 Cells , Software , Workflow
6.
Bioinformatics ; 35(22): 4764-4766, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31197313

ABSTRACT

SUMMARY: Capture Hi-C is a powerful approach for detecting chromosomal interactions involving, at least on one end, DNA regions of interest, such as gene promoters. We present Chicdiff, an R package for robust detection of differential interactions in Capture Hi-C data. Chicdiff enhances a state-of-the-art differential testing approach for count data with bespoke normalization and multiple testing procedures that account for specific statistical properties of Capture Hi-C. We validate Chicdiff on published Promoter Capture Hi-C data in human Monocytes and CD4+ T cells, identifying multitudes of cell type-specific interactions, and confirming the overall positive association between promoter interactions and gene expression. AVAILABILITY AND IMPLEMENTATION: Chicdiff is implemented as an R package that is publicly available at https://github.com/RegulatoryGenomicsGroup/chicdiff. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Chromatin , Chromosomes , Software , Humans , Promoter Regions, Genetic
7.
Genome Res ; 26(11): 1505-1519, 2016 11.
Article in English | MEDLINE | ID: mdl-27650846

ABSTRACT

Cell lineages, which shape the body architecture and specify cell functions, derive from the integration of a plethora of cell intrinsic and extrinsic signals. These signals trigger a multiplicity of decisions at several levels to modulate the activity of dynamic gene regulatory networks (GRNs), which ensure both general and cell-specific functions within a given lineage, thereby establishing cell fates. Significant knowledge about these events and the involved key drivers comes from homogeneous cell differentiation models. Even a single chemical trigger, such as the morphogen all-trans retinoic acid (RA), can induce the complex network of gene-regulatory decisions that matures a stem/precursor cell to a particular step within a given lineage. Here we have dissected the GRNs involved in the RA-induced neuronal or endodermal cell fate specification by integrating dynamic RXRA binding, chromatin accessibility, epigenetic promoter epigenetic status, and the transcriptional activity inferred from RNA polymerase II mapping and transcription profiling. Our data reveal how RA induces a network of transcription factors (TFs), which direct the temporal organization of cognate GRNs, thereby driving neuronal/endodermal cell fate specification. Modeling signal transduction propagation using the reconstructed GRNs indicated critical TFs for neuronal cell fate specification, which were confirmed by CRISPR/Cas9-mediated genome editing. Overall, this study demonstrates that a systems view of cell fate specification combined with computational signal transduction models provides the necessary insight in cellular plasticity for cell fate engineering. The present integrated approach can be used to monitor the in vitro capacity of (engineered) cells/tissues to establish cell lineages for regenerative medicine.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Neurogenesis , Animals , Cell Line, Tumor , Cell Lineage , Chromatin/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Endoderm/cytology , Epigenesis, Genetic , Mice , Transcriptional Activation , Tretinoin/pharmacology
8.
Genome Med ; 8(1): 57, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27198694

ABSTRACT

BACKGROUND: Alterations in genetic and epigenetic landscapes are known to contribute to the development of different types of cancer. However, the mechanistic links between transcription factors and the epigenome which coordinate the deregulation of gene networks during cell transformation are largely unknown. METHODS: We used an isogenic model of stepwise tumorigenic transformation of human primary cells to monitor the progressive deregulation of gene networks upon immortalization and oncogene-induced transformation. We applied a systems biology approach by combining transcriptome and epigenome data for each step during transformation and integrated transcription factor-target gene associations in order to reconstruct the gene regulatory networks that are at the basis of the transformation process. RESULTS: We identified 142 transcription factors and 24 chromatin remodelers/modifiers (CRMs) which are preferentially associated with specific co-expression pathways that originate from deregulated gene programming during tumorigenesis. These transcription factors are involved in the regulation of divers processes, including cell differentiation, the immune response, and the establishment/modification of the epigenome. Unexpectedly, the analysis of chromatin state dynamics revealed patterns that distinguish groups of genes which are not only co-regulated but also functionally related. Decortication of transcription factor targets enabled us to define potential key regulators of cell transformation which are engaged in RNA metabolism and chromatin remodeling. CONCLUSIONS: We reconstructed gene regulatory networks that reveal the alterations occurring during human cellular tumorigenesis. Using these networks we predicted and validated several transcription factors as key players for the establishment of tumorigenic traits of transformed cells. Our study suggests a direct implication of CRMs in oncogene-induced tumorigenesis and identifies new CRMs involved in this process. This is the first comprehensive view of the gene regulatory network that is altered during the process of stepwise human cellular tumorigenesis in a virtually isogenic system.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Sequence Analysis, RNA/methods , Cell Line , Chromatin Assembly and Disassembly , Gene Expression Regulation, Neoplastic , Humans , Transcription Factors/genetics
9.
BMC Genomics ; 17: 355, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27185059

ABSTRACT

BACKGROUND: Proximity ligation-mediated methods are essential to study the impact of three-dimensional chromatin organization on gene programming. Albeit significant progress has been made in the development of computational tools that assess long-range chromatin interactions, next to nothing is known about the quality of the generated datasets. METHOD: We have developed LOGIQA ( www.ngs-qc.org/logiqa ), a database hosting quality scores for long-range genome interaction assays, accessible through a user-friendly web-based environment. RESULTS: Currently, LOGIQA harbors QC scores for >900 datasets, which provides a global view of their relative quality and reveals the impact of genome size, coverage and other technical aspects. LOGIQA provides a user-friendly dataset query panel and a genome viewer to assess local genome-interaction maps at different resolution and quality-assessment conditions. CONCLUSIONS: LOGIQA is the first database hosting quality scores dedicated to long-range chromatin interaction assays, which in addition provides a platform for visualizing genome interactions made available by the scientific community.


Subject(s)
Databases, Genetic , Genome , Genomics/methods , Software , Computational Biology/methods , Epistasis, Genetic , Genetic Heterogeneity , Reproducibility of Results , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...