Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(22): eabj5014, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35658037

ABSTRACT

The speed of an active electronic semiconductor device is limited by RC timescale, i.e., the time required for its charging and discharging. To circumvent this ubiquitous limitation of conventional electronics, we investigate diodes under intense mid-infrared light-field pulses. We choose epitaxial graphene on silicon carbide as a metal/semiconductor pair, acting as an ultrarobust and almost-transparent Schottky diode. The usually dominant forward direction is suppressed, but a characteristic signal occurs in reverse bias. For its theoretical description, we consider tunneling through the light-field-modulated Schottky barrier, complemented by a dynamical accumulation correction. On the basis only of the DC parametrization of the diode, the model provides a consistent and accurate description of the experimentally observed infrared phenomena. This allows the conclusion that cycle-by-cycle dynamics determines rectification. As the chosen materials have proven capabilities for transistors, circuits, and even a full logic, we see a way to establish light-field-driven electronics with rapidly increasing functionality.

2.
Sci Rep ; 9(1): 11205, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31371741

ABSTRACT

We present an efficient Schottky-diode detection scheme for Terahertz (THz) radiation, implemented on the material system epitaxial graphene on silicon carbide (SiC). It employs SiC as semiconductor and graphene as metal, with an epitaxially defined interface. For first prototypes, we report on broadband operation up to 580 GHz, limited only by the RC circuitry, with a responsivity of 1.1 A/W. Remarkably, the voltage dependence of the THz responsivity displays no deviations from DC responsivity, which encourages using this transparent device for exploring the high frequency limits of Schottky rectification in the optical regime. The performance of the detector is demonstrated by resolving sharp spectroscopic features of ethanol and acetone in a THz transmission experiment.

3.
Phys Rev Lett ; 114(4): 047402, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25679907

ABSTRACT

We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3 kV cm-1, in excellent agreement with the theoretical estimate.

4.
Rev Sci Instrum ; 81(8): 083901, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20815612

ABSTRACT

We describe an optical fiber based setup for performing polarization resolved magneto-optical spectroscopy measurements under low temperatures ( approximately 4 K) and high magnetic fields ( approximately 8 T). The measurements are performed in a windowless helium Dewar. Circularly polarized light is produced inside the Dewar by inserting the polarizing elements between the fiber end and the sample. Photoconductivity spectra of a GaAs/AlGaAs multiquantum-well sample have been measured over the photon energy range of 1.5-1.7 eV in left and right circularly polarized light under crossed magnetic and electric fields. It is shown that reversing the direction of magnetic field produces the same spectral changes as caused by changing the direction of circular polarization with the optical components.

5.
Opt Express ; 15(24): 15741-6, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-19550858

ABSTRACT

We report on the formation of nanoscale tungsten spikes generated on subwavelength periodic ripples which built up by single beam 800 nm femtosecond laser pulses. The nanospikes have a diameter ranging from 10 to 100 nm and are up to 250 nm in length. The nanospikes orientate from the ridges toward the valleys of the ripple structures independent of the polarization of the light. The heterogeneous nucleation of the liquid phase at the irradiated surface and the inhomogeneous surface roughness are considered as the mechanism of this nanospike formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...