Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging Biol ; 22(2): 335-347, 2020 04.
Article in English | MEDLINE | ID: mdl-31102039

ABSTRACT

PURPOSE: Plastic changes in the central auditory system involving the GABAergic system accompany age-related hearing loss. Such processes can be investigated with positron emission tomography (PET) imaging using [18F]flumazenil ([18F]FMZ). Here, [18F]FMZ PET-based modeling approaches allow a simple and reliable quantification of GABAA receptor binding capacity revealing regional differences and age-related changes. PROCEDURES: Sixty-minute list-mode PET acquisitions were performed in 9 young (range 5-6 months) and 11 old (range 39-42 months) gerbils, starting simultaneously with the injection of [18F]FMZ via femoral vein. Non-displaceable binding potentials (BPnd) with pons as reference region were calculated for auditory cortex (AC), inferior colliculus (IC), medial geniculate body (MGB), somatosensory cortex (SC), and cerebellum (CB) using (i) a two-tissue compartment model (2TCM), (ii) the Logan plot with image-derived blood-input (Logan (BI)), (iii) a simplified reference tissue model (SRTM), and (iv) the Logan reference model (Logan (RT)). Statistical parametric mapping analysis (SPM) comparing young and old gerbils was performed using 3D parametric images for BPnd based on SRTM. Results were verified with in vitro autoradiography from five additional young gerbils. Model assessment included the Akaike information criterion (AIC). Hearing was evaluated using auditory brainstem responses. RESULTS: BPnd differed significantly between models (p < 0.0005), showing the smallest mean difference between 2TCM as reference and SRTM as simplified procedure. SRTM revealed the lowest AIC values. Both volume of distribution (r2 = 0.8793, p = 0.018) and BPnd (r2 = 0.8216, p = 0.034) correlated with in vitro autoradiography data. A significant age-related decrease of receptor binding was observed in auditory (AC, IC, MGB) and other brain regions (SC and CB) (p < 0.0001, unpaired t test) being confirmed by SPM using pons as reference (p < 0.0001, uncorrected). CONCLUSION: Imaging of GABAA receptor binding capacity in gerbils using [18F]FMZ PET revealed SRTM as a simple and robust quantification method of GABAA receptors. Comparison of BPnd in young and old gerbils demonstrated an age-related decrease of GABAA receptor binding.


Subject(s)
Brain/diagnostic imaging , Flumazenil/metabolism , Positron-Emission Tomography , Receptors, GABA-A/metabolism , Age Factors , Aging , Animals , Autoradiography , Brain Mapping/methods , Fluorine Radioisotopes/metabolism , Gerbillinae , Kinetics , Radiopharmaceuticals/metabolism
2.
Brain Struct Funct ; 223(9): 4293-4305, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30203305

ABSTRACT

Here, we present results from an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) study in the Mongolian gerbil, a preferred animal model in auditory research. One major issue in preclinical nuclear imaging, as well as in most of the neurophysiological methods investigating auditory processing, is the need of anesthesia. We compared the usability of two types of anesthesia which are frequently employed in electrophysiology, ketamine/xylazine (KX), and fentanyl/midazolam/medetomidine (FMM), for valid measurements of auditory activation with 18F-FDG PET. Gerbils were placed in a sound-shielding box and injected with 18F-FDG. Two acoustic free-field conditions were used: (1) baseline (no stimulation, 25 dB background noise) and (2) 90 dB frequency-modulated tones (FM). After 40 min of 18F-FDG uptake, a 30 min acquisition was performed using a small animal PET/CT system. Blood glucose levels were measured after the uptake phase before scanning. Standardized uptake value ratios for relevant regions were determined after implementing image and volume of interest templates. Scans demonstrated a significantly higher uptake in the inferior colliculus with FM stimulation compared to baseline in awake subjects (+ 12%; p = 0.02) and with FMM anesthesia (+ 13%; p = 0.0012), but not with KX anesthesia. In non-auditory brain regions, no significant difference was detected. Blood glucose levels were significantly higher under KX compared to FMM anesthesia (17.29 ± 0.42 mmol/l vs. 14.30 ± 1.91 mmol/l; p = 0.024). These results suggest that valid 18F-FDG PET measurements of auditory activation comparable to electrophysiology can be obtained from gerbils during opioid-based anesthesia due to its limited effects on interfering blood glucose levels.


Subject(s)
Anesthetics/administration & dosage , Auditory Pathways/drug effects , Fentanyl/administration & dosage , Ketamine/administration & dosage , Medetomidine/administration & dosage , Midazolam/administration & dosage , Xylazine/administration & dosage , Acoustic Stimulation , Anesthesia , Animals , Auditory Pathways/physiology , Central Nervous System Agents/administration & dosage , Female , Fluorodeoxyglucose F18 , Gerbillinae , Imaging, Three-Dimensional , Male , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...